Skip to content
BY 4.0 license Open Access Published by De Gruyter (O) February 28, 2023

The crystal structure of 4-(pyren-1-yl)butyl-4-nitrobenzoate, C27H21NO4

  • Claudio Barrientos , Juan Arturo Squella and Silvana Moris ORCID logo EMAIL logo

Abstract

C27H21NO4, triclinic, P 1 (no. 2), a = 7.3476(2) Å, b = 7.4894(2) Å, c = 20.5137(5) Å, α = 89.33000(10)°, β = 79.7070(10)°, γ = 67.5220(10)°, V = 1024.31(5) Å3, Z = 2, R gt (F) = 0.0536, wR ref (F 2) = 0.1792, T = 296.15 K.

CCDC no.: 2240071

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Yellow plate
Size: 0.35 × 0.25 × 0.06 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.09 mm−1
Diffractometer, scan mode: Bruker APEX-II, φ and ω
θ max, completeness: 32.0°, 99%
N(hkl) measured, N(hkl) unique, R int: 38,014, 7063, 0.040
Criterion for I obs, N(hkl) gt: I obs > 2 σ(I obs), 5031
N(param)refined: 289
Programs: Olex2 [1, 2], SHELX [3]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
O1 0.4095 (2) 0.8490 (3) 1.08666 (5) 0.0987 (5)
O2 0.6965 (2) 0.7674 (2) 1.02432 (6) 0.0892 (4)
O3 0.01850 (13) 0.67382 (17) 0.82333 (5) 0.0648 (3)
O4 0.33353 (11) 0.54604 (12) 0.76573 (4) 0.04113 (19)
N1 0.5222 (2) 0.78884 (18) 1.03367 (5) 0.0564 (3)
C1 0.44000 (19) 0.74323 (17) 0.97852 (5) 0.0437 (3)
C2 0.2401 (2) 0.7740 (2) 0.98909 (6) 0.0531 (3)
H2 0.158519 0.820771 1.030400 0.064*
C3 0.16270 (19) 0.7339 (2) 0.93679 (6) 0.0511 (3)
H3 0.027484 0.754845 0.942625 0.061*
C4 0.28751 (16) 0.66242 (16) 0.87561 (5) 0.0384 (2)
C5 0.48893 (17) 0.63062 (17) 0.86679 (5) 0.0423 (2)
H5 0.571989 0.580763 0.825928 0.051*
C6 0.56792 (19) 0.67255 (19) 0.91844 (6) 0.0465 (3)
H6 0.702598 0.653632 0.912757 0.056*
C7 0.19537 (16) 0.62925 (17) 0.81986 (5) 0.0402 (2)
C8 0.25759 (15) 0.52075 (15) 0.70760 (5) 0.0358 (2)
H8A 0.185248 0.645771 0.691641 0.043*
H8B 0.166398 0.454702 0.718498 0.043*
C9 0.43361 (14) 0.40236 (14) 0.65491 (5) 0.0328 (2)
H9A 0.502114 0.275800 0.670577 0.039*
H9B 0.527700 0.465788 0.646040 0.039*
C10 0.36291 (14) 0.37930 (14) 0.59137 (5) 0.03200 (19)
H10A 0.294305 0.506381 0.576082 0.038*
H10B 0.267575 0.317386 0.600758 0.038*
C12 0.53513 (14) 0.25967 (14) 0.53653 (4) 0.03144 (19)
H12A 0.630883 0.321344 0.528407 0.038*
H12B 0.602484 0.133206 0.552462 0.038*
C13 0.47882 (13) 0.23119 (13) 0.47123 (4) 0.02908 (18)
C14 0.62853 (13) 0.12525 (13) 0.41680 (4) 0.02766 (18)
C15 0.57399 (13) 0.09871 (13) 0.35550 (4) 0.02739 (17)
C16 0.36996 (14) 0.17924 (14) 0.34853 (5) 0.03227 (19)
C17 0.22596 (14) 0.28310 (16) 0.40299 (5) 0.0387 (2)
H17 0.091561 0.336786 0.399302 0.046*
C18 0.28016 (14) 0.30759 (16) 0.46264 (5) 0.0367 (2)
H18 0.180442 0.377396 0.498101 0.044*
C19 0.83749 (14) 0.04039 (15) 0.42073 (5) 0.0351 (2)
H19 0.876289 0.055191 0.460395 0.042*
C20 0.97964 (14) −0.06069 (16) 0.36817 (5) 0.0390 (2)
H20 1.113403 −0.112965 0.372651 0.047*
C21 0.92887 (14) −0.08889 (15) 0.30599 (5) 0.0349 (2)
C22 0.72401 (13) −0.00832 (13) 0.30033 (4) 0.02965 (18)
C23 0.66812 (16) −0.03515 (15) 0.23939 (5) 0.0347 (2)
C24 0.46044 (17) 0.04475 (17) 0.23460 (5) 0.0406 (2)
H24 0.422564 0.025098 0.195258 0.049*
C25 0.31924 (16) 0.14804 (17) 0.28639 (5) 0.0399 (2)
H25 0.185593 0.200442 0.281771 0.048*
C26 0.81792 (19) −0.13906 (18) 0.18585 (5) 0.0450 (3)
H26 0.782881 −0.157630 0.145840 0.054*
C27 1.01746 (19) −0.2145 (2) 0.19172 (6) 0.0508 (3)
H27 1.115145 −0.281697 0.155408 0.061*
C28 1.07376 (17) −0.19124 (18) 0.25090 (6) 0.0458 (3)
H28 1.208538 −0.243855 0.254145 0.055*

1 Source of materials

Equimolar quantities of the respective nitrobenzoyl chloride and 4-pyren-1-ylbutanol were mixed in a round bottom flask with dry THF to obtain the 4-(pyren-1-yl)butyl nitrobenzoate derivatives, according to previously reported methodology [4], [5], [6] 4-(pyren-1-yl)butyl-4-nitrobenzoate (4–NBPy) C27H21NO4. Yellow powder, yield: 58.64%, mp: 168 °C–169 °C, 1 H NMR (CDCl3) d (ppm): 8.22–7.76 (m, 12H, Ar–H), 4.34, (t, 2 H, CH2–OR), 3.36, (t, 2 H, CH2-pyrene), 2.05–1.80 (m, 4H, 2xCH2). 13 C -NMR (75 MHz, CDCl3 d [ppm]): 163.62, 149.34, 134.96, 134.54, 130.39, 129.80, 129.48, 128.92, 127.57, 126.46, 126.31, 125.71, 124.91, 124.00, 123.76, 122.37, 122.15, 94.06, 64.67, 63.55, 32.00, 28.68, 27.38, 26.88. Single crystals of 4-(pyren-1-yl)butyl-4-nitrobenzoate was prepared by dissolving the polycrystalline material in boiling chloroform (0.5 mL) and then hot methanol was added dropwise (0.5 mL) [5]. The mixture was allowed to crystallize for two weeks until the appearance of yellow plates.

2 Experimental details

For solving the structure OLEX2 was used [1] with the olex2.solve [2] and refined with the use of SHELX program package [3]. SADABS-2016/2 (Bruker, 2016/2) was used for absorption correction. H atoms were finally included in their calculated positions and treated as riding on their parent atom with constrained thermal parameters as Uiso(H) = 1.2 Ueq(C), the constraint distances of C–H ranging from 0.93 Å to 0.97 Å.

3 Comment

The pyrene ring and derivatives are well known for there properties in photochemistry field [7]. Excited state of pyrene in solution present an excimer formation which is used as a standard for micro-environmental changes [8, 9]. Pyrene is frequently used for supramolecular studies as a probe for proteins, peptides and lipid membranes and it is very sensible to environmental changes such as pH, pressure or temperature and used to identify guest molecules, metals or other substrates [10], [11], [12], [13], [14], [15]. Nitro compounds have an important role in organic synthesis due to their versatility to transform into other functional groups [16] and can be used as redox mediators for interesting biomolecules such as NADH [17]. The N–O bond lengths in the nitro group are 1.2144(16) and 1.2071(18) Å. In the crystal structure of the title compound, coplanarity of the nitro group with the pyrene group was observed (the C2–C1–N1–O1 torsion angle is 1.2(2)°).


Corresponding author: Silvana Moris, Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Avenida San Miguel 3605, Talca 3480112, Chile, E-mail:

Funding source: FONDEQUIP

Award Identifier / Grant number: EQM200138

Acknowledgements

We gratefully acknowledge support by FONDEQUIP EQM200138 for D8 Venture diffractometer.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: FONDEQUIP EQM200138.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K., Puschmann, H. The anatomy of a comprehensive constrained, restrained refinement program for the modern computing environment–Olex2 dissected. Acta Crystallogr. 2015, A71, 59–75; https://doi.org/10.1107/s2053273314022207.Search in Google Scholar PubMed PubMed Central

2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Moscoso, R., Barrientos, C., Moris, S., Squella, J. A. Electrocatalytic oxidation of NADH in a new nanostructured interface with an entrapped butylpyrene nitroaromatic derivative. J. Electroanal. Chem. 2019, 837, 48–54; https://doi.org/10.1016/j.jelechem.2019.02.013.Search in Google Scholar

5. Barrientos, C., Barahona, P., Guevara, J. L., Squella, J. A., Moris, S. The crystal structure of 4-(pyren-1-yl)butyl-3-nitrobenzoate, C27H21NO4. Z. Kristallogr. N. Cryst. Struct. 2019, 234, 1213–1214; https://doi.org/10.1515/ncrs-2019–0340.10.1515/ncrs-2019-0340Search in Google Scholar

6. Barrientos, C., Moscoso, R., Moris, S., Squella, J. A. Electrochemical study of butyl-pyrene nitrobenzoate derivatives trapped on MWCNT nanostructured electrodes. J. Electrochem. Soc. 2021, 168, 126515; https://doi.org/10.1149/1945–7111/ac3ff5.10.1149/1945-7111/ac3ff5Search in Google Scholar

7. Figueira–Duarte, T. M., Mullen, K. Pyrene-based materials for organic electronics. Chem. Rev. 2011, 111, 7260–7314; https://doi.org/10.1021/cr100428a.Search in Google Scholar PubMed

8. Forster, T., Kasper, K. Ein Konzentrationsumschlag der Fluoreszenz des Pyrens. Z. Elektrochem., Ber. Bunsenges. Phys. Chem. 1955, 59, 976–980; https://doi.org/10.1002/bbpc.19550591018.Search in Google Scholar

9. Kalyanasundaram, K., Thomas, J. K. Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. J. Am. Chem. Soc. 1977, 99, 2039–2044; https://doi.org/10.1021/ja00449a004.Search in Google Scholar

10. Sahoo, D., Weers, P. M. M., Ryan, R. O., Narayanaswami, V. Lipid-triggered conformational switch of Apolipophorin III helix bundle to an extended helix organization. J. Mol. Biol. 2002, 321, 201–214; https://doi.org/10.1016/S0022–2836(02)00618–6.10.1016/S0022-2836(02)00618-6Search in Google Scholar

11. Paris, P. L., Langenhan, J. M., Kool, E. T. Probing DNA sequences in solution with a monomer-excimer fluorescence color change. Nucleic Acids Res. 1998, 26, 3789–3793; https://doi.org/10.1093/nar/26.16.3789.Search in Google Scholar PubMed PubMed Central

12. Tong, G., Lawlor, J. M., Tregear, G. W., Haralambidis, J. Oligonucleotide-polyamide hybrid molecules containing multiple pyrene residues exhibit significant excimer fluorescence. J. Am. Chem. Soc. 1995, 117, 12151–12158; https://doi.org/10.1021/ja00154a015.Search in Google Scholar

13. Song, X., Swanson, B. I. Rational design of an optical sensing system for multivalent proteins. Langmuir 1999, 15, 4710–4712; https://doi.org/10.1021/la980758k.Search in Google Scholar

14. Pokhrel, M. R., Bossmann, S. H. Synthesis, characterization, and first application of high molecular weight polyacrylic acid derivatives possessing perfluorinated side chains and chemically linked pyrene labels. J. Phys. Chem. B 2000, 104, 2215–2223; https://doi.org/10.1021/jp9917190.Search in Google Scholar

15. Ludwig, R., Dzung, N. T. K. Calixarene-based molecules for cation recognition. Sensors 2002, 2, 397–416; https://doi.org/10.3390/s21000397.Search in Google Scholar

16. Yan, G., Yang, M. Recent advances in the synthesis of aromatic nitro compounds. Org. Biomol. Chem. 2013, 11, 2554–2566; https://doi.org/10.1039/c3ob27354g.Search in Google Scholar PubMed

17. Contreras, G., Barrientos, C., Moscoso, R., Álvarez–Luejec, A., Squella, J. A. Electrocatalytic determination of NADH by means of electrodes modified with MWCNTs and nitroaromatic compounds. Microchem. J. 2020, 159, 105422; https://doi.org/10.1016/j.microc.2020.105422.Search in Google Scholar

Received: 2023-01-20
Accepted: 2023-02-06
Published Online: 2023-02-28
Published in Print: 2023-06-27

© 2023 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 26.5.2024 from https://www.degruyter.com/document/doi/10.1515/ncrs-2023-0034/html
Scroll to top button