Skip to content
BY 4.0 license Open Access Published by De Gruyter (O) October 28, 2022

The crystal structure of ((E)-2,4-dibromo-6-(((5-(nitro)-2-oxidophenyl)imino)methyl)phenolato-κ 3 N,O,O′)tris(pyridine-κN)manganese(II), C28H21Br2MnN5O4

  • Ting Li , Keying Qiu , Yuxing Tan ORCID logo EMAIL logo and Wujiu Jiang ORCID logo

Abstract

C28H21Br2MnN5O4, triclinic, P 1 (no. 2), a = 8.9193(14) Å, b = 9.2271(15) Å, c = 17.933(3) Å, α = 103.574(2)°, β = 91.518(2)°, γ = 98.762(2)°, V = 1415.0(4) Å3, Z = 2, Rgt (F) = 0.0347, wRref (F 2) = 0.0864, T = 296(2) K.

CCDC no.: 2194277

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Brown block
Size: 0.22 × 0.21 × 0.18 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 3.33 mm−1
Diffractometer, scan mode: Bruker Apex-II, φ and ω
θ max, completeness: 25.1°, >99%
N(hkl)measured, N(hkl)unique, R int: 15,027, 5015, 0.026
Criterion for I obs, N(hkl)gt: I obs > 2σ(I obs), 3905
N(param)refined: 361
Programs: Bruker [1], Shelx [2, 3], WinGX/Ortep [4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
Br1 0.18458 (5) 0.46796 (6) 0.35855 (3) 0.08344 (16)
Br2 0.77624 (5) 0.75514 (5) 0.47505 (2) 0.07265 (14)
Mn1 0.90399 (5) 0.87393 (5) 0.22980 (3) 0.04434 (13)
O1 0.8114 (2) 0.7609 (2) 0.30946 (12) 0.0489 (5)
O2 0.9105 (2) 0.9820 (3) 0.13740 (13) 0.0552 (6)
O4 0.3667 (4) 0.6314 (4) −0.08933 (17) 0.1019 (11)
O3 0.4608 (4) 0.7898 (5) −0.15187 (17) 0.1136 (12)
N1 0.4602 (4) 0.7393 (5) −0.09467 (17) 0.0734 (9)
N2 0.6833 (3) 0.7760 (3) 0.16347 (13) 0.0394 (5)
N5 1.0041 (3) 0.6661 (3) 0.16103 (15) 0.0492 (6)
N3 1.1405 (3) 0.9492 (3) 0.28493 (16) 0.0531 (7)
N4 0.8498 (3) 1.0919 (3) 0.31044 (16) 0.0498 (6)
C4 0.3819 (4) 0.5607 (4) 0.3421 (2) 0.0552 (8)
C3 0.4903 (4) 0.6107 (4) 0.40302 (19) 0.0558 (9)
H3 0.468446 0.596070 0.451395 0.067*
C2 0.6302 (4) 0.6823 (4) 0.39079 (17) 0.0472 (7)
C1 0.6748 (3) 0.7048 (3) 0.31819 (16) 0.0410 (7)
C13 0.8015 (3) 0.9307 (3) 0.08481 (18) 0.0445 (7)
C12 0.7961 (4) 0.9844 (4) 0.0171 (2) 0.0556 (8)
H12 0.871043 1.062302 0.011526 0.067*
C11 0.6845 (4) 0.9254 (4) −0.04019 (19) 0.0561 (9)
H11 0.682861 0.964016 −0.083633 0.067*
C10 0.5737 (4) 0.8079 (4) −0.03316 (17) 0.0515 (8)
C9 0.5705 (3) 0.7536 (4) 0.03294 (17) 0.0462 (7)
H9 0.494949 0.674957 0.037038 0.055*
C8 0.6791 (3) 0.8162 (3) 0.09219 (16) 0.0394 (7)
C7 0.5693 (3) 0.6984 (4) 0.18504 (17) 0.0461 (7)
H7 0.485962 0.662393 0.149704 0.055*
C6 0.5558 (3) 0.6605 (3) 0.25846 (16) 0.0426 (7)
C5 0.4134 (4) 0.5870 (4) 0.27136 (19) 0.0535 (8)
H5 0.338477 0.555193 0.231284 0.064*
C14 1.0981 (4) 0.6768 (5) 0.1050 (2) 0.0621 (9)
H14 1.125151 0.770358 0.093742 0.075*
C15 1.1564 (4) 0.5551 (6) 0.0633 (2) 0.0723 (12)
H15 1.221043 0.566425 0.024457 0.087*
C16 1.1183 (4) 0.4182 (5) 0.0796 (2) 0.0729 (11)
H16 1.157246 0.334790 0.052449 0.087*
C17 1.0225 (5) 0.4046 (5) 0.1361 (2) 0.0717 (11)
H17 0.994554 0.312004 0.148196 0.086*
C18 0.9682 (4) 0.5303 (4) 0.1747 (2) 0.0601 (9)
H18 0.901962 0.519804 0.213013 0.072*
C19 1.1891 (4) 0.8904 (4) 0.3400 (2) 0.0700 (11)
H19 1.122857 0.816830 0.355638 0.084*
C20 1.3336 (5) 0.9338 (5) 0.3749 (3) 0.0807 (13)
H20 1.364187 0.891356 0.413793 0.097*
C21 1.4301 (5) 1.0397 (6) 0.3514 (3) 0.0939 (15)
H21 1.529065 1.069086 0.373140 0.113*
C22 1.3820 (5) 1.1026 (7) 0.2960 (3) 0.1124 (19)
H22 1.446324 1.176900 0.279906 0.135*
C23 1.2353 (4) 1.0538 (5) 0.2641 (2) 0.0790 (12)
H23 1.202022 1.096949 0.226001 0.095*
C24 0.8710 (4) 1.1121 (4) 0.3860 (2) 0.0599 (9)
H24 0.905788 1.036435 0.404584 0.072*
C25 0.8445 (4) 1.2384 (4) 0.4377 (2) 0.0658 (10)
H25 0.861636 1.248558 0.490237 0.079*
C26 0.7921 (5) 1.3497 (4) 0.4109 (3) 0.0763 (12)
H26 0.772808 1.436926 0.444761 0.092*
C27 0.7686 (5) 1.3300 (4) 0.3332 (3) 0.0753 (12)
H27 0.732729 1.403805 0.313461 0.090*
C28 0.7985 (4) 1.2010 (4) 0.2851 (2) 0.0574 (9)
H28 0.782454 1.188760 0.232403 0.069*

Source of material

All chemicals were purchased from commercial sources and used as received. A mixture of 2-amino-4-nitrophenol (10 mmol), 3,5-dibromo-2-hydroxybenzaldehyde (10 mmol) and CH3OH (50 mL) was added in a round-bottomed flask (100 mL), and refluxed with agitating for 4.0 h. The solution was cooled, and then the insoluble matter is removed by filtration. The ligand 2,4-dibromo-6-(((2-hydroxy-5-nitrophenyl)imino)methyl)phenol was obtained. 1 mmol 2,4-dibromo-6-(((2-hydroxy-5-nitrophenyl)imino)methyl)-phenol and 1 mmol manganese(II) acetate were added in CH3OH (50 mL) and refluxed with agitating for 4 h. Then, most of the methanol was evaporated, followed by adding pyridine dropwise until it just dissolved. The reaction solution continued to reflux for 2.5 h and filtered afterwards. Finally, the title crystal was precipitated by controlling solvent volatilization.

Experimental details

All H-atoms were placed geometrically and refined using a riding model with common isotropic displacement factors U iso(H) = 1.2 or 1.5 U eq(parent C-atom).

Comment

Schiff bases are versatile compounds, which have been synthesized from the condensation of carbonyl compounds with amino compounds and exhibit a broad range of applications [5]. The metal complexes with Schiff bases have been widely investigated for their versatile structures and potential applications in many fields [6, 7]. At present, the Schiff base derivatives of salicylaldine are mostly studied. Such Schiff bases have multiple coordination sites and can form stable metal complexes with most metal ions [8]. Furthermore, manganese is one of the most important transition metal ions in biological systems and plays an important role in activation of enzymes and sugar metabolism [9, 10].

The ORTEP diagram is presented in the Figure. Bond lengths and angles are all in the expected ranges. The ligand of the title molecule exhibits an E configuration. The bond length of C7=N2 is 1.275(4) Å, which is similar to those reported in the literature [11]. Mn1 forms a distorted octahedral coordination geometry and it is surrounded by two oxygen atoms (O1 and O2) and one nitrogen atom (N2) from the ligand, three nitrogen atoms (N3, N4 and N5) from three different pyridine ligands. The axial positions were occupied by two nitrogen atoms (N4 and N5) from two pyridine ligands, respectively. The angle of N4–Mn1–N5 is 169.09(9)° which obviously deviates from linear angle 180°. The four atoms (O1, O2, N2 and N3) were placed in equatorial sites, the sum of the angles [O2–Mn1–N2 = 76.44(8)°, O1–Mn1–N2 = 83.74(8)°, O1–Mn1–N3 = 98.41(10)°, O2–Mn1–N3 = 102.38(10)°] is 360.97°, which shows that the four atoms are basically planar, but the bond lengths [Mn1–O1 = 2.076(2) Å, Mn1–O2 = 2.123(2) Å, Mn1–N2 = 2.222(2) Å, Mn1–N3 = 2.243(3) Å] are unequal. It indicated that the central Mn atom is six-coordinate in a distorted pentagonal pyramid geometry, and the coordination mode is similar to that of previously reported complexes [12, 13].

Intermolecular hydrogen bonding exists in the crystal structure of the title compound. The carbon atom C15 provides one intermolecular hydrogen bond to O4′ of another molecule (C15⋯O4 = 3.504(5) Å; ′ = x + 1, y, z). The carbon atom C22 provides one intermolecular hydrogen bond to O3′′ of another molecule (C22⋯O3′′ = 3.257(6) Å; ′′ = −x + 2, −y + 2, −z). The carbon atom C28 provides one intermolecular hydrogen bond to O3′′′ of another molecule (C28⋯O3′′′ = 3.306(5) Å; ′′′ = −x + 1, −y + 2, −z).


Corresponding author: Yuxing Tan, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang, Hunan 421008, China, E-mail:

Award Identifier / Grant number: 2022JJ30096

Award Identifier / Grant number: NYD202212

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the Hunan Provincial Natural Science Foundation of China (No. 2022JJ30096), and College Students Innovation and Entrepreneurship Training Program (No. NYD202212).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. SAINT, APEX2 and SADABS; Bruker AXS Inc.: Madison, WI, USA, 2012.Search in Google Scholar

2. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar PubMed PubMed Central

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Farrugia, L. J. WinGX and Ortep for Windows: an update. J. Appl. Crystallogr. 2012, 45, 849–854; https://doi.org/10.1107/s0021889812029111.Search in Google Scholar

5. Patil, K. M., Masand, H. V., Maldhure, K. A. Schiff base metal complexes precursor for metal oxide nanomaterials: a review. Curr. Nanosci. 2021, 17, 634–645; https://doi.org/10.2174/1573413716999201127112204.Search in Google Scholar

6. Uddin, M. N., Ahmed, S. S., Alam, S. M. R. Review: Biomedical applications of Schiff base metal complexes. J. Coord. Chem. 2020, 73, 3109–3149; https://doi.org/10.1080/00958972.2020.1854745.Search in Google Scholar

7. Zhang, J., Xu, L., Wong, W.-Y. Energy materials based on metal Schiff base complexes. Coord. Chem. Rev. 2018, 355, 180–198; https://doi.org/10.1016/j.ccr.2017.08.007.Search in Google Scholar

8. Jiang, W.-J., Ni, P.-H., Mao, F.-F., Tan, Y.-X. Syntheses, crystal structures and property of pyridine zinc(II) complexes based on halogenated salicylaldehyde Schiff base. Chin. J. Struct. Chem. 2022, 41, 12–18.Search in Google Scholar

9. Li, J.-X., Xiong, L.-Y., Fu, L.-L., Bo, W.-B., Du, Z.-X., Feng, X. Structural diversity of Mn(II) and Cu(II) complexes based on 2-carboxyphenoxyacetate linker: syntheses, conformation comparison and magnetic properties. J. Solid State Chem. 2022, 305, 122636; https://doi.org/10.1016/j.jssc.2021.122636.Search in Google Scholar

10. Ali, B., Shakir, M. R., Iqbal, M. A. Techniques in the synthesis of mononuclear manganese complexes: a review. Rev. Inorg. Chem. 2017, 37, 105–130; https://doi.org/10.1515/revic-2017-0004.Search in Google Scholar

11. Dutta, S., Basu, P., Chakravorty, A. Mononuclear manganese(IV) in tridentate ONO coordination. Synthesis, structure, and redox regulation via oxygen donor variation. Inorg. Chem. 1991, 30, 4031–4037; https://doi.org/10.1021/ic00021a012.Search in Google Scholar

12. Raja, I., Lo, K. M., Ng, S. W. Dimethyl sulfoxide-κO)(2-formylphenolato-κ2O, O′)[2-(2-oxidobenzylideneamino)phenolato-κ3O, N, O′] manganese(III). Acta Crystallogr. 2011, E67, m674; https://doi.org/10.1107/s1600536811015935.Search in Google Scholar

13. Zhu, X. W. Synthesis, crystal structures, and antibacterial activity of manganese(III) complexes with Schiff bases. Russ. J. Coord. Chem. 2019, 45, 608–614; https://doi.org/10.1134/s1070328419080104.Search in Google Scholar

Received: 2022-08-23
Accepted: 2022-10-14
Published Online: 2022-10-28
Published in Print: 2023-01-27

© 2022 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 1.6.2024 from https://www.degruyter.com/document/doi/10.1515/ncrs-2022-0425/html
Scroll to top button