Skip to content
BY 4.0 license Open Access Published by De Gruyter (O) November 3, 2021

Crystal structure of (E)-7-methoxy-2-((2-methoxypyridin-3-yl)methylene)-3,4-dihydronaphthalen-1 (2H)-one, C18H17NO3

  • Guang-Qun Ma ORCID logo , Feng-Lan Zhao and Qing-Guo Meng EMAIL logo

Abstract

C18H17NO3, triclinic, P 1 (no. 2), a = 7.4638(8) Å, b = 8.0392(8) Å, c = 12.6767(11) Å, α = 108.187(8)°, β = 94.029(7)°, γ = 95.071(8)°, V = 715.95(13) Å3, Z = 2, R gt (F) = 0.0573, wR ref (F2) = 0.1460, T = 100.0(2) K.

CCDC no.: 2078245

The crystal structure is shown in Figure 1. Displacement ellipsoids are drawn at the 40% probability level.

Figure 1:
Figure 1:

Tables 1 and 2 contain details on crystal structure and measurement conditions and a list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Block, colourless
Size: 0.14 × 0.12 × 0.11 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.09 mm−1
Diffractometer, scan mode: SuperNova, ω-scans
θmax, completeness: 25.5°, >99%
N(hkl)measuredN(hkl)uniqueRint: 4744, 2669, 0.037
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 2005
N(param)refined: 201
Programs: CyrsAlisPRO[1], SHELX [2, 3]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

x y z Uiso*/Ueq
C1 0.4910 (3) 0.1203 (2) 0.86985 (15) 0.0217 (5)
C2 0.6695 (3) 0.1701 (2) 0.83660 (14) 0.0206 (5)
C3 0.8186 (3) 0.2572 (2) 0.92903 (14) 0.0230 (5)
H3A 0.916215 0.311075 0.899584 0.028*
H3B 0.866031 0.168400 0.956701 0.028*
C4 0.7525 (3) 0.3980 (2) 1.02558 (15) 0.0248 (5)
H4A 0.844833 0.433154 1.088648 0.030*
H4B 0.736184 0.500820 1.003028 0.030*
C5 0.5290 (3) 0.4166 (2) 1.16872 (15) 0.0252 (5)
H5 0.610263 0.503446 1.220032 0.030*
C6 0.3648 (3) 0.3714 (2) 1.20108 (15) 0.0242 (5)
H6 0.336584 0.427547 1.272925 0.029*
C7 0.2402 (3) 0.2406 (2) 1.12574 (14) 0.0223 (5)
C8 0.2868 (3) 0.1579 (2) 1.01896 (14) 0.0200 (5)
H8 0.205669 0.069967 0.968295 0.024*
C9 0.4529 (3) 0.2054 (2) 0.98746 (14) 0.0199 (5)
C10 0.5788 (3) 0.3375 (2) 1.06188 (14) 0.0219 (5)
C11 0.6814 (3) 0.1399 (2) 0.72671 (15) 0.0228 (5)
H11 0.576011 0.088912 0.679913 0.027*
C12 0.8379 (3) 0.1768 (2) 0.67181 (15) 0.0244 (5)
C13 0.8157 (3) 0.2338 (2) 0.57687 (15) 0.0255 (5)
C14 1.1129 (3) 0.2358 (3) 0.55114 (16) 0.0329 (5)
H14 1.206928 0.255827 0.510601 0.039*
C15 1.1523 (3) 0.1801 (3) 0.64078 (16) 0.0327 (6)
H15 1.269939 0.162890 0.660508 0.039*
C16 1.0129 (3) 0.1501 (2) 0.70131 (16) 0.0274 (5)
H16 1.036791 0.111721 0.762329 0.033*
C17 0.0170 (3) 0.2766 (3) 1.25498 (15) 0.0336 (6)
H17A 0.093695 0.256182 1.312615 0.050*
H17B −0.105858 0.233022 1.258028 0.050*
H17C 0.025292 0.400834 1.265831 0.050*
C18 0.6192 (4) 0.3032 (3) 0.44516 (16) 0.0382 (6)
H18A 0.694018 0.410383 0.452263 0.057*
H18B 0.494655 0.318511 0.431122 0.057*
H18C 0.651981 0.209287 0.384248 0.057*
N1 0.9453 (3) 0.2634 (2) 0.51818 (13) 0.0315 (5)
O1 0.3738 (2) 0.01520 (17) 0.80264 (10) 0.0309 (4)
O2 0.0733 (2) 0.18705 (16) 1.14835 (10) 0.0259 (4)
O3 0.6447 (2) 0.26042 (17) 0.54699 (10) 0.0305 (4)

Source of material

Five milliliters of sodium hydroxide aqueous solution (25%) was added dropwise to the mixture of 7-methoxy-1-tetralone and 2-methoxynicotinaldehyde in 10 mL methanol and stirred at room temperature for 3 h. The in process-control was monitored by silica gel thin layer chromatography (TLC, 254 nm). When the reaction was finished, the precipitate was filtered from the reaction mixture and dissolved with ethyl acetone. The organic phase was washed with water and brine in turn, and dried over anhydrous sodium sulfate. After filtration and concentration in vacuo to yield a white solid, which was purified by silica-gel column chromatography (petroleum ether: ethyl acetate = 1:2, v/v). Suitable crystals of the title compound were obtained by recrystallization in dichloromethane and methanol (1:2, v/v) system and dried under vacuo at 75 °C for 3 h.

Experimental details

The H atoms were placed in idealized positions and treated as riding on their parent atoms, with d (C–H) = 0.97 Å (methylene), Uiso(H) = 1.2Ueq(C), and d(C–H) = 0.93 Å (aromatic), Uiso(H) = 1.2Ueq(C).

Comment

At present, 3,4-dihydronaphthalen-1(2H)-one (DHN) derivatives with anti-tumor and anti-inflammatory activities have been used as novel allergic and inflammatory responses modifiers [4, 5] and as a potential tyrosinase inhibitor for the treatment of pigmentation disorders [6]. However, DHN derivatives are rarely developed as anti-neuroinflammatory drugs. Thus the synthesis and crystal structure of novel benzylidene-substituted DHN derivatives with anti-neuroinflammatory activities are of great significance. Our group also synthesized some of these compounds in the early stage, and studied their anti-neuroinflammatory activity [7], [8], [9]. In this study, we designed and synthesized a new DHN derivative through Claisen–Schmidt condensation reaction.

Single-crystal structure analysis revealed that the title compound crystallized in the triclinic space group P 1 . The ORTEP diagram is presented in Figure 1. Bond lengths and angles are all in the expected ranges [911]. There is only a drug molecule in the asymmetric unit. The C(2)=C(11) olefinic bond adopts the (E) stereochemistry [12]. Because of the distorting effect of 3,4-dihydronaphthalen-1(2H)-one, 7-methoxy and 2-methoxyphenyl groups they are not coplanar with each other. This twisted configuration may increase the likelihood of interactions with bioactive molecules, for the purposes of creating a more potent biological activity [13].


Corresponding author: Qing-Guo Meng, School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, P. R. China, E-mail:

Funding source: Science and Technology Innovation Development Plan of Yantai

Award Identifier / Grant number: 2020XDRH105

Funding source: National Natural Science Foundation of China

Award Identifier / Grant number: 81473104

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by Science and Technology Innovation Development Plan of Yantai (No. 2020XDRH105) and the National Natural Science Foundation of China (No. 81473104).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Rigaku OD. CrysAlisPRO; Rigaku Oxford Diffraction Ltd: Yarnton, Oxfordshire, England, 2017.Search in Google Scholar

2. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Barlow, J. W., Zhang, T., Woods, O., Byrne, A. J., Walsh, J. J. Novel mast cell-stabilising amine derivatives of 3,4-dihydronaphthalen-1(2H)-one and 6,7,8,9-tetrahydro-5H-benzo[7]annulen-5-one. Med. Chem. 2011, 7, 213–223; https://doi.org/10.2174/157340611795564222.Search in Google Scholar

5. Kirby, A. J., Le, L. R., Maharlouie, F., Mason, P., Nicholls, P. J., Smith, H. J., Simons, C. Inhibition of retinoic acid metabolising enzymes by 2-(4-aminophenylmethyl)-6-hydroxy-3,4-dihydronaphthalen-1(2H)-one and related compounds. J. Enzym. Inhib. Med. Chem. 2003, 18, 27–33; https://doi.org/10.1080/1475636021000049221.Search in Google Scholar

6. Ryu, I., Choi, I., Ullah, S., Choi, H., Chun, P., Moon, H. R. Tyrosinase inhibitory effects of derivatives of (E)-2-(substituted benzylidene)-3,4-dihydronaphthalen-1(2H)-one. Bull. Kor. Chem. Soc. 2020, 41, 1134–1139; https://doi.org/10.1002/bkcs.12122.Search in Google Scholar

7. Zhao, S. N., Sun, Z. H., Shan, G. Z., Meng, Q. G. Crystal structure of (E)-7-fluoro-2-(4-methoxy-2(trifluoromethyl)benzylidene)-3,4-dihydronaphthalen-1(2H)-one, C19H14F4O2. Z. Kristallogr. N. Cryst. Struct. 2021, 236, 1059–1061.10.1515/ncrs-2020-0484Search in Google Scholar

8. Luan, M. Z., Wang, H. Y., Zhang, M., Song, J., Hou, G. G., Zhao, F. L., Meng, Q. G. Crystal structure of (E)-2-(3,5-bis(trifluoromethyl) benzylidene)-7-methoxy-3,4-dihydronaphthalen-1(2H)-one, C20H14F6O2. Z. Kristallogr. N. Cryst. Struct. 2021, 236, 61–63; https://doi.org/10.1515/ncrs-2020-0446.Search in Google Scholar

9. Zhang, X. F., Meng, Q. G. Crystal structure of (E)-2-((2-methoxy-3-pyridyl) methylene)-7-fluoro-3,4-dihydronaphthalen-1(2H)-one, C17H14FNO2. Z. Kristallogr. N. Cryst. Struct. 2021, 236, 507–509; https://doi.org/10.1515/ncrs-2020-0603.Search in Google Scholar

10. Luan, M. Z., Meng, Q. G. Crystal structure of (E)-7-methoxy-2((5-methoxypyridin-3-yl)methylene)-3,4-dihydronaphthalen-1(2H)-one, C18H17NO3. Z. Kristallogr. N. Cryst. Struct. 2021, 236, 387–389; https://doi.org/10.1515/ncrs-2020-0602.Search in Google Scholar

11. Wang, L., Meng, Q-G., Jiang, N., Wei, L., Wang, C-H. Crystal structure of (E)-7-methoxy-2-((6-methoxypyridin-3-yl) methylene)-3,4-dihydronaphthalen-1(2H)-one, C18H17NO3. Z. Kristallogr. N. Cryst. Struct. 2021, 236, 1069.10.1515/ncrs-2021-0222Search in Google Scholar

12. Li, N., Xin, W. Y., Yao, B. R., Wang, C. H., Cong, W., Zhao, F., Li, H. J., Hou, Y., Meng, Q. G., Hou, G. G. Novel dissymmetric 3,5-bis(arylidene)-4-piperidones as potential antitumor agents with biological evaluation (in vitro) and (in vivo). Eur. J. Med. Chem. 2018, 147, 21–33; https://doi.org/10.1016/j.ejmech.2018.01.088.Search in Google Scholar

13. Li, N., Yao, B. Y., Wang, C. H., Meng, Q. G., Hou, G. G. Synthesis, crystal structure and activity evaluation of novel 3,4-dihydro-1-benzoxepin-5(2H)-one derivatives as protein-tyrosine kinase (PTK) inhibitors. Acta Crystallogr. 2017, C73, 1003–1009; https://doi.org/10.1107/s2053229617015145.Search in Google Scholar

Received: 2021-09-29
Accepted: 2021-10-22
Published Online: 2021-11-03
Published in Print: 2022-02-23

© 2021 Guang-Qun Ma et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 5.6.2024 from https://www.degruyter.com/document/doi/10.1515/ncrs-2021-0378/html
Scroll to top button