Skip to content
BY 4.0 license Open Access Published by De Gruyter (O) January 20, 2021

Crystal structure of tetrakis(μ-naphthalene-1-carboxylato-κ2O,O′)bis(methanol)copper(II), C46H36Cu2O10

  • Li‐Qin Shi ORCID logo

Abstract

C46H36Cu2O10, monoclinic, C2/c (no. 15), a = 32.663(7) Å, b = 7.4214(15) Å, c = 21.785(4) Å, β = 131.68(3)°, V = 3944.0(19) Å3, Z = 4, Rgt(F) = 0.0478, wRref(F2) = 0.1583, T = 295 K.

CCDC no.: 2047897

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Blue block
Size:0.47 × 0.24 × 0.15 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:1.14 mm−1
Diffractometer, scan mode:Rigaku R-AXIS RAPID, ω
θmax, completeness:25.0°, >99%
N(hkl)measured, N(hkl)unique, Rint:14878, 3469, 0.054
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 2299
N(param)refined:262
Programs:Rigaku [1], SHELX [2], [, 3]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
Cu10.00310 (3)0.83972 (8)0.48061 (4)0.0417 (2)
O10.03638 (19)0.7646 (5)0.5920 (3)0.0592 (11)
O20.03265 (18)1.0437 (5)0.6249 (2)0.0611 (12)
O30.07396 (16)0.9280 (5)0.5230 (3)0.0566 (11)
O40.06879 (17)1.2057 (5)0.5548 (3)0.0646 (13)
O50.01618 (17)0.5841 (5)0.4482 (3)0.0563 (11)
H5B−0.0086300.5067800.4313700.084*
C10.0639 (3)0.9459 (9)0.7684 (4)0.0638 (18)
H1A0.0466691.0555340.7437620.077*
C20.0836 (3)0.9086 (10)0.8470 (5)0.079 (2)
H2A0.0790150.9924460.8737480.095*
C30.1093 (3)0.7505 (10)0.8840 (4)0.0657 (18)
H3A0.1226090.7272720.9365330.079*
C40.1162 (2)0.6210 (8)0.8446 (4)0.0509 (15)
C50.1428 (3)0.4556 (9)0.8837 (4)0.0626 (18)
H5A0.1559360.4332140.9361630.075*
C60.1494 (3)0.3303 (10)0.8464 (4)0.0688 (19)
H6A0.1658050.2206150.8721860.083*
C70.1317 (3)0.3647 (9)0.7688 (4)0.0680 (19)
H7A0.1371250.2784910.7437710.082*
C80.1067 (2)0.5231 (8)0.7297 (4)0.0561 (16)
H8A0.0957830.5438250.6784980.067*
C90.0969 (2)0.6574 (8)0.7646 (3)0.0460 (13)
C100.0693 (2)0.8251 (7)0.7270 (3)0.0426 (13)
C110.0446 (2)0.8798 (8)0.6416 (4)0.0443 (13)
C120.1682 (3)0.9853 (9)0.5590 (4)0.0593 (17)
H12A0.1492840.8767270.5374780.071*
C130.2175 (3)1.0052 (11)0.5757 (5)0.080 (2)
H13A0.2303520.9118080.5639030.096*
C140.2462 (3)1.1599 (11)0.6088 (5)0.074 (2)
H14A0.2787071.1723710.6192370.089*
C150.2280 (2)1.3028 (9)0.6278 (4)0.0577 (17)
C160.2593 (3)1.4604 (11)0.6656 (5)0.076 (2)
H16A0.2924661.4700010.6777090.092*
C170.2425 (3)1.5994 (11)0.6849 (5)0.082 (2)
H17A0.2640901.7018920.7106730.098*
C180.1924 (3)1.5861 (10)0.6654 (5)0.075 (2)
H18A0.1805021.6813830.6778850.090*
C190.1604 (3)1.4356 (9)0.6284 (4)0.0602 (17)
H19A0.1270001.4312880.6155110.072*
C200.1771 (2)1.2866 (8)0.6092 (3)0.0489 (15)
C210.1473 (2)1.1197 (8)0.5732 (3)0.0441 (13)
C220.0932 (2)1.0845 (8)0.5493 (3)0.0446 (13)
C230.0381 (3)0.5763 (10)0.4102 (5)0.079 (2)
H23A0.0410280.4527620.4004210.118*
H23B0.0144360.6399290.3588700.118*
H23C0.0737970.6308180.4454440.118*

Source of material

The reaction of 0.172 g (1.0 mmol) CuCl2⋅2H2O with 0.344 g (2.0 mmol) 1-naphthoic acid (HNAP) in 20 mL methanol for 15 min afforded green solid, which was then filtered. The green filtrate was allowed to stand at room temperature by slow evaporation within two days; green block crystals suitable for X-ray diffraction were obtained (yield: 63.5% based on CuCl2⋅2H2O input).

Experimental details

The structure was solved by direct methods with the SHELXS program. All H-atoms from C atoms were positioned with idealized geometry (Uiso(H) = 1.2 Ueq(C) and Uiso(H) = 1.5 Ueq(C) for aromatic and methyl H atoms, respectively) using a riding model with C–H = 0.93 or 0.96 Å. H atom attached to the O atom was refined using a riding model, with the O–H distance fixed with Uiso(H) values set at 1.5 Ueq(O).

Comment

Construction of supramolecular systems and crystal engineering have been one of the most active fields in chemistry and materials science, due to their fascinating structures and potential applications in ion exchange [4], catalysis [5], [, 6], gas storage and separation [7], [, 8], fluorescent sensing [9], [, 10], optical and magnetic properties [11], [, 12], and so on. In the past decades, considerable effort has been devoted to design the supramolecular assemblies by carefully selecting building blocks and organic ligands [13]. Aromatic carboxylate ligands, due to their versatile coordination modes and potential luminescence nature, have been extensively employed as linkers to construct functional materials. Up to now, many complexes which were assembled by 1-naphthoates (NAP) have been reported [14], [15], [16].

Crystallographic analysis of the title complex shows that it crystallizes in the monoclinic space group C2/c, containing a dinuclear paddle-wheel complex [Cu2(NAP)4(MeOH)2], which is composed of two CuII ions, four NAP ligands and two methanol molecules. Each Cu ion is coordinated by four O atoms from four different NAP ligands, while the O atom from methanol occupies the apical position, forming a slightly distorted square pyramid with d(Cu1–O1) =1.969(4) Å, d(Cu1–O2#1) = 1.956(4) Å, d(Cu1–O3) =1.949(4) Å, d(Cu1–O4#1) = 1.953(4) Å, d(Cu1–O5) = 2.163(4) Å (#1 = −x, −y + 2, −z + 1), which are in good agreement with those reported for similar complexes [17]. The Cu⃛Cu distance is 2.578(1) Å, which is observed within the normal range for dinuclear paddle-wheel units in the structures of CuII carboxylate complexes [18], [19]. The dinuclear CuII units are further connected to form one-dimensional chains by hydrogen bonds [d(O5⃛O1#2 = 2.900(4) Å, O5–H5B⃛O1#2 = 150(2)°, #2 = −x, −y + 2, −z + 1].


Corresponding author: Li‐Qin Shi, Ningbo Polytechnic, Ningbo315800, P.R.China, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The author declares no conflicts of interest regarding this article.

References

1. Rigaku. RAPID–AUTO; Rigaku Corporation: Tokyo, Japan, 1998.Search in Google Scholar

2. Sheldrick, G. M. SHELXT – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Das, S., Kim, H., Kim, K. Metathesis in single crystal: complete and reversible exchange of metal ions constituting the frameworks of metal-organic frameworks. J. Am. Chem. Soc. 2009, 131, 3814–3815; https://doi.org/10.1021/ja808995d.Search in Google Scholar

5. Xu, W., Chen, H., Jie, K. C., Yang, Z. Z., Li, T. T., Dai, S. Entropy-driven mechanochemical synthesis of polymetallic zeolitic imidazolate frameworks for CO2 fixation. Angew. Chem. Int. Ed. 2019, 58, 5018–5022; https://doi.org/10.1002/anie.201900787.Search in Google Scholar

6. Zhang, M. Y., Xu, W., Li, T. T., Zhu, H. L., Zheng, Y. Q. In situ growth of tetrametallic FeCoMnNi–MOF-74 on nickel foam as efficient bifunctional electrocatalysts for the evolution reaction of oxygen and hydrogen. Inorg. Chem. 2020, 59, 15467–15477; https://doi.org/10.1021/acs.inorgchem.0c02504.Search in Google Scholar

7. Forse, A. C., Gonzalez, M. I., Siegelman, R. L., Witherspoon, V. J., Jawahery, S., Mercado, R., Milner, P. J., Martell, J. D., Smit, B., Blümich, B., Long, J. R., Reimer, J. A. Unexpected diffusion anisotropy of carbon dioxide in the metal-organic framework Zn2(dobpdc). J. Am. Chem. Soc. 2018, 140, 1663–1673; https://doi.org/10.1021/jacs.7b09453.Search in Google Scholar

8. Li, H., Wang, K. C., Sun, Y. J., Lollar, C. T., Li, J. L., Zhou, H. C. Recent advances in gas storage and separation using metal-organic frameworks. Mater. Today 2018, 21, 108–121; https://doi.org/10.1016/j.mattod.2017.07.006.Search in Google Scholar

9. Lu, K. D., Aung, T., Guo, N. N., Weichselbaum, R., Lin, W. B. Nanoscale metal-organic frameworks for therapeutic, imaging, and sensing applications. Adv. Mater. 2018, 30, 1707634; https://doi.org/10.1002/adma.201707634.Search in Google Scholar

10. Wang, L., Tu, B. T., Xu, W., Fu, Y., Zheng, Y. Q. Uranyl organic framework as a highly selective and sensitive turn-on and turn-off luminescent sensor for dual functional detection arginine and MnO4−. Inorg. Chem. 2020, 59, 5004–5017; https://doi.org/10.1021/acs.inorgchem.0c00236.Search in Google Scholar

11. Espallargas, G. M., Coronado, E. Magnetic functionalities in MOFs: from the framework to the pore. Chem. Soc. Rev. 2018, 47, 533–557.10.1039/C7CS00653ESearch in Google Scholar PubMed

12. Xu, W., Si, Z. X., Xie, M., Zhou, L. X., Zheng, Y. Q. Experimental and theoretical approaches to three uranyl coordination polymers constructed by phthalic acid and N,N′-donor bridging ligands: crystal structures, luminescence, and photocatalytic dedgradation of tetracycline hydrochloride. Cryst. Growth Des. 2017, 17, 2147–2157; https://doi.org/10.1021/acs.cgd.7b00097.Search in Google Scholar

13. Inge, A. K., Köppen, M., Su, J., Feyand, M., Xu, H. Y., Zou, X. D., O’Keeffe, M., Stock, N. Unprecedented topological complexity in a metal- organic framework constructed from simple buiding units. J. Am. Chem. Soc. 2016, 138, 1970–1976; https://doi.org/10.1021/jacs.5b12484.Search in Google Scholar

14. Takasaki, S., Takamizawa, S. Reversible crystal deformation of a single-crystal host of copper(II) 1-naphthoate-pyrazine through crystal phase transition induced by methanol vapor sorption. Chem. Commun. 2015, 51, 5024–5027; https://doi.org/10.1039/c4cc09948f.Search in Google Scholar

15. Liu, Z. Y., Xia, Y. F., Jiao, J., Yang, E. C., Zhao, X. J. Two water-bridged cobalt(II) chains with isomeric naphthoate spacers: from metamagnetic to single-chain magnetic behaviour. Dalton Trans. 2015, 44, 19927–19934; https://doi.org/10.1039/c5dt03297k.Search in Google Scholar

16. Xu, W., Yu, X. K. Crystal structure of tetrakis(μ-naphthalene-1-carboxylato-κ2O,O′)- bis(pyridine)copper(II), C54H38Cu2N2O8. Z. Kristallogr. NCS 2013, 228, 9–10; https://doi.org/10.1524/ncrs.2013.0006.Search in Google Scholar

17. Karthik, K., Qadir, A. M. Synthesis and crystal structure of a new binuclear copper(II) carboxylate complex as precursor for copper(II) oxide nanoparticles. J. Struct. Chem. 2019, 60, 1126–1132; https://doi.org/10.1134/s002247661907014x.Search in Google Scholar

18. Wang, G. M., Xue, Z. Z., Pan, J., Wei, L., Han, S. D., Qian, J. J., Wang, Z. H. Ligand-oriented assembly of a porous metal-organic framework by [Cu4II4] clusters and paddle-wheel [Cu2II(COO)4(H2O)2] subunits. CrystEngComm 2016, 18, 8362–8365; https://doi.org/10.1039/c6ce01954d.Search in Google Scholar

19. Ohmura, T., Setoyama, N., Mukae, Y., Usuki, A., Senda, S., Matsumoto, T., Tatsumi, K. Supramolecular porphyrin-based metal-organic frameworks: Cu(II) naphthoate–Cu(II) tetrapyridyl porphine structures exhibiting selective CO2/N2 separation. CrystEngComm 2017, 19, 5173–5177; https://doi.org/10.1039/c7ce01138e.Search in Google Scholar

Received: 2020-12-05
Accepted: 2020-12-23
Published Online: 2021-01-20
Published in Print: 2021-05-26

© 2020 Li‐Qin Shi, published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 30.4.2024 from https://www.degruyter.com/document/doi/10.1515/ncrs-2020-0622/html
Scroll to top button