Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 4, 2023

An Extended Gamma-Lindley Model and Inference for the Prediction of Covid-19 in Tunisia

  • Afif Masmoudi EMAIL logo , Dorsaf Laribi and Imen Boutouria
From the journal Mathematica Slovaca

ABSTRACT

In this research paper, we introduce an extension of the Gamma-Lindley distribution using a particular exponentiation of its cumulative distribution function, which offers a more flexible model for lifetime data. Another attractive feature of this extension is that it has several particular cases: Weibull, generalized Pareto, Lindley, exponential and Gamma-Lindley distributions. Different statistical properties of this distribution are explored, such as the density, failure rate and the r th moments. We attempt to prove that the extended Gamma-Lindley distribution is characterized by its truncated moment of order statistics. One of the main merits of this work lies in the fact that it provides the ability of this characterization to simulate the new distribution compared with the inverse transform sampling method. Estimation of the parameters using the tailed regression method is investigated. The COVID-19 real data evolution in Tunisia illustrates the performance of the EGL distribution compared with its special cases through some criteria such as the Kolmogorov-Smirnov test, Mean Squared error and Kullback-Leibler divergence. The predictive ability of the extended Gamma-Lindley distribution proved to provide a better fit to expect the number of deaths by Corona-virus in Tunisia in the future period.

2020 Mathematics Subject Classification: 62-xx

(Communicated by Gejza Wimmer)


REFERENCES

[1] https://www.worldometers.info/coronavirus/Search in Google Scholar

[2] ARNOLD, B. C.—BALAKRISHNAN, N.—NAGARAJA, H. N.: A First Course in Order Statistics, John Wiley and Sons, New York, 1992.Search in Google Scholar

[3] ASHOUR, S. K.—ELTEHIWY, M. A.: Exponentiated power Lindley distribution, J. Adv. Res. 6 (2015), 895– 905.10.1016/j.jare.2014.08.005Search in Google Scholar PubMed PubMed Central

[4] BAKOUCH, H. S.—AL-ZAHRANIA, B. M.—AL-SHOMRANIA, A. A.—MARCHI, V. A. A.—LOUZADA, F.: An extended Lindley distribution, J. Korean Statist. Soc. 41(1) (2012), 75–85.10.1016/j.jkss.2011.06.002Search in Google Scholar

[5] BOUTOURIA, I.—BOUZIDA, I.—MASMOUDI, A.: On characterizing the Gamma and beta q-distributions, Bull. Korean Math. Soc. 55(5) (2018), 1563–1575.Search in Google Scholar

[6] BOUHADJAR, M.—AHMED, M. G.—EHAB, M. A.—ZEGHDOUDI, H.—ETAF, A.— ALANAZI, T. A.— EL-RAOUF, M. M. A.—ESLAM, H.: The power XLindley distribution: Statistical inference, fuzzy reliability, and COVID-19 application, J. Funct. Spaces 2022 (2022), Art. ID 9094078.10.1155/2022/9094078Search in Google Scholar

[7] BOUCHAHED, L.—ŻEGHDOUDI, H.: A new and unified approach in generalizing the Lindley’s distribution with applications, Stat. Transit. 19(1) (2018), 61–74.10.21307/stattrans-2018-004Search in Google Scholar

[8] BARRIGA, G. D. C.—LOUZADA-NETO, F.—CANCHO, V. G.: The complementary exponential power lifetime model, Comput. Statist. Data Anal. 54(5) (2011), 1250–1259.10.1016/j.csda.2010.09.005Search in Google Scholar

[9] BHATI, D.—MALIK, M. A.: Lindley-exponential distribution: Properties and applications, Metron 73 (2015), 335–357.10.1007/s40300-015-0060-9Search in Google Scholar

[10] DURBIN, J.—WATSON, G.: Testing for serial correlation in least squares regression, I, Biometrika 37 (1950), 409–428.10.1093/biomet/37.3-4.409Search in Google Scholar

[11] DENIZ, E. G.—OJEDA, E. C.: The discrete Lindley distribution properties and applications, J. Stat. Comput. Simul. 81 (2011), 1405–1416.10.1080/00949655.2010.487825Search in Google Scholar

[12] FREDJ, B. H.—CHÉRIF, F.: Novel Corona virus disease infection in Tunisia: Mathematical model and the impact of the quarantine strategy, Chaos Solitons Fractals 138 (2020), Art. ID 109969.10.1016/j.chaos.2020.109969Search in Google Scholar PubMed PubMed Central

[13] FANELLI, D.—PIAZZA, F.: Analysis and forecast of COVID-19 spreading in China, Italy and France, Chaos Solitons Fractals 134 (2020), 109–761.10.1016/j.chaos.2020.109761Search in Google Scholar PubMed PubMed Central

[14] GUPTA, R. D.—KUNDU, D.: Generalized exponential distributions, Aust. N. Z. J. Stat. 41(2) (1999), 173–188.10.1111/1467-842X.00072Search in Google Scholar

[15] GHITANY, M. E.—AL-MUTAIRI, D. K.—AL-AWADHI, F. A.—AL-BURAIS, M. M.: Marshall-Olkin extended Lindley distribution and its application, Int. J. Appl. Math. 25 (2012), 709–721.Search in Google Scholar

[16] KUCHARSKI A. J.—RUSSELL T. W.—DIAMOND, C.: Early dynamics of transmission and control of COVID-19: a mathematical modelling study, Lancet Infect. Dis. 20(5) (2020), 553–558.10.1016/S1473-3099(20)30144-4Search in Google Scholar PubMed PubMed Central

[17] KILANY, N. M.: Characterization of Lindley distrubution based on truncated moments of order statistics, J. Appl. Probab. Stat. 6(2) (2017), 1–6.10.18576/jsap/060210Search in Google Scholar

[18] LIYANAGE, G. W.—PARARAI, M.: A generalized power Lindley distribution with applications, Asian J.Math. Appl. (2014), Art. ID ama0169, 23 pp.Search in Google Scholar

[19] LARIBI, D.—MASMOUDI, A.—BOUTOURIA, I.: Characterization of generalized Gamma-Lindley distribution using truncated moments of order statistics, Math. Slovaca 71(2) (2021), 455–474.10.1515/ms-2017-0481Search in Google Scholar

[20] MAZUCHELI, J.—ACHCAR, J. A.: The Lindley distribution applied to competing risks lifetime data, Comput. Methods Programs Biomed. 104 (2011), 188–192.10.1016/j.cmpb.2011.03.006Search in Google Scholar PubMed

[21] MASMOUDI, A.—ELAOUD, A.—HASSEN, B. H.—SALAH, S. N.: A SIR-Poisson Model for COVID-19: Evolution and transmission inference in the Maghreb Central Regions, Arab. J. Sci. Eng. 694 (2020), 1–10.Search in Google Scholar

[22] MASMOUDI, K.—MASMOUDI, A.: An EM algorithm for singular Gaussian mixture models, Filomat 33(15) (2019), 4753–4767.10.2298/FIL1915753MSearch in Google Scholar

[23] MUDHOLKAR, G. S.—SRIVASTAVA, D. K.—FREIMER, M.: The exponentiated Weibull family: a reanalysis of the bus-motor-failure data, Technometrics 37(4) (1995), 436–445.10.1080/00401706.1995.10484376Search in Google Scholar

[24] MSELMI, F.: Multivariate Normal α-Stable Distribution, Thesis, 2015.Search in Google Scholar

[25] NADARAJAH, S.—KOTZ, S.: The exponentiated type distributions, Acta Appl. Math. 92(2) (2006), 97–111.10.1007/s10440-006-9055-0Search in Google Scholar

[26] SMITH, R. M.—BAIN, L. J.: An exponential power life-testing distribution, Comm. Statist. Theory Methods 4 (1975), 469–481.10.1080/03610917508548405Search in Google Scholar

[27] ZEGHDOUDI, H.—NEDJAR, S.: On Gamma Lindley distribution: Properties and simulations, J. Comput. Appl. Math. 298 (2016), 167–174.10.1016/j.cam.2015.11.047Search in Google Scholar

[28] ZEGHDOUDI, H.—NEDJAR, S.: Gamma Lindley distribution and its application, J. Appl. Probab. Stat.11(1) (2016), 129–138.10.16929/as/2016.923.83Search in Google Scholar

[29] ZEGHDOUDI, H.—LAZRI, N.—DJABRANE, Y.: Lindley Pareto distribution, Stat. Transit. 19(4) (2018), 671–692.10.21307/stattrans-2018-035Search in Google Scholar

Received: 2022-05-10
Accepted: 2022-09-19
Published Online: 2023-08-04

© 2023 Mathematical Institute Slovak Academy of Sciences

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/ms-2023-0078/html
Scroll to top button