Skip to content
Licensed Unlicensed Requires Authentication Published online by De Gruyter May 10, 2024

Understanding habitat suitability and road mortality for the conservation of the striped hyaena (Hyaena hyaena) in Batna (East Algeria)

  • Katia Selmoun-Ourdani EMAIL logo , Arjun Dheer ORCID logo , Mokrane Karar , Said Fritas , Mansour Amroun , Nabila Zemmouri-Boukhemza ORCID logo , Kahina Mallil and Ingrid Wiesel
From the journal Mammalia

Abstract

The determination of suitable habitats and roadkill hotspots allows for the prioritization of areas of conservation and the identification of road sections that require appropriate planning and development. Understanding the factors that influence the species’ presence and those contributing to its road-related fatalities is crucial. This study demonstrates the use of MaxEnt modeling to map the potential distribution of the striped hyaena (Hyaena hyaena) in Batna province (East Algeria) using occurrence records and a set of environmental variables. The results indicated that the two primary environmental variables that influence the distribution of the species are the shrubland, and the slope with a contribution of 37.5 and 30.2 %, respectively, followed by built-up areas (12 %) and distance to roads (7.2 %). The species may occupy steep terrain with shrubland near anthropized areas. Road collisions represent a threat to the species, with 28 documented casualties from 2010 to 2020 in Batna. The kernel density estimation revealed an important roadkill hotspot along the national roads 3 and 28. This study represents a preliminary step for the use of wildlife ecological niche modeling and road management in Algeria.


Corresponding author: Katia Selmoun-Ourdani, Laboratory of Ecology and Biology of Terrestrial Ecosystems, University of Tizi-Ouzou, Tizi-Ouzou, 15000, Algeria, E-mail:

Acknowledgments

We would like to extend our gratitude to the Forest Conservation of Batna and the Belezma National Park for providing the essential material and human resources necessary for conducting this study. We pay homage to the late Dr. Messaoudene M., who instilled in us a deep appreciation for work and nature. Our thanks also go to the foresters from various districts, especially Mr. Taher Mebarki, who bravely overcame field challenges to help us gather as much data as possible. Additionally, we are grateful to the members of our research laboratory at the University of Tizi-Ouzou, whose support was indispensable to this study. We would like to express our heartfelt thanks to Mr. Said Abderrahmani, the former director of BNP, to Mr. Athmane Briki, and to Karim Gaagaa, who were pivotal in initiating my field study. Our appreciation extends to the entire team of photographers and wildlife enthusiasts who shared their photos and insights, including Hakim Benmokhtar, Toufik Lemoufek, Adel Bechkit, and Raouf Guechi. We are also thankful to all the local people, particularly Mr. Abbas and Mr. Aziz, who provided invaluable guidance in the field.

  1. Research ethics: This study was performed in accordance with the national laws of Algeria.

  2. Author contributions: KSO, MK and IW designed this study and performed statistical analysis; AD reviewed the manuscript; KSO, SF and KM collected data; NZB and MA supervised the study. The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: The raw data can be obtained upon reasonable request from the corresponding author.

References

Abisaid, M. and Dloniak, S.M.D. (2015). Hyaena hyaena. The IUCN Red List of Threatened Species 2015: e.T10274A45195080.Search in Google Scholar

Abraham, A.J., Webster, A.B., Jordaan, J., Prys‐Jones, T.O., Ganswindt, A., De Jager, P., and Doughty, C.E. (2021). Hyaenas play unique ecosystem role by recycling key nutrients in bones. Afr. J. Ecol. 60: 81–86, https://doi.org/10.1111/aje.12907.Search in Google Scholar

Aiello-Lammens, M.E., Boria, R.A., Radosavljevic, A., Vilela, B., and Anderson, R.P. (2015). spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38: 541–545, https://doi.org/10.1111/ecog.01132.Search in Google Scholar

Akash, M., Dheer, A., Dloniak, S.M., and Jacobson, A.P. (2021). The faded stripes of Bengal: a historical perspective on the easternmost distribution of the striped hyena. Eur. J. Wildlife Res. 67(6): 1–12, https://doi.org/10.1007/s10344-021-01552-9.Search in Google Scholar

Akay, A.E., Inac, S., and Yildirim, I.C. (2011). Monitoring the local distribution of striped hyenas (Hyaena hyaena L.) in the Eastern Mediterranean Region of Turkey (Hatay) by using GIS and remote sensing technologies. Environ. Monit. Assess. 181: 445–455, https://doi.org/10.1007/s10661-010-1840-6.Search in Google Scholar PubMed

Alam, M.S. and Khan, J.A. (2015). Food habits of striped hyena (Hyaena hyaena) in a semi-arid conservation area of India. J. Arid Land 7: 860–866, https://doi.org/10.1007/s40333-015-0007-2.Search in Google Scholar

Alam, M.S., Khan, J.A., Kushwaha, S.P.S., Agrawal, R., Pathak, B.J., and Sandeep, K. (2014). Assessment of suitable habitat of near threatened striped hyena (Hyaena hyaena Linnaeus, 1758) using remote sensing and geographic information system. Asian J. Geoinf. 14: 1–10.Search in Google Scholar

Alam, M.S., Khan, J.A., and Pathak, B.J. (2009). Status ecology and conservation of striped hyena (Hyaena hyaena) in Gir National Park & Sanctuary. Project Technical Report, Wildlife Society of India, Aligarh, India.Search in Google Scholar

Alam, M.S., Khan, J.A., and Pathak, B.J. (2015). Striped hyena (Hyaena hyaena) status and factors affecting its distribution in the Gir National Park and Sanctuary, India. Folia Zool 64: 32–39.10.25225/fozo.v64.i1.a4.2015Search in Google Scholar

Al-Ghamdi, A.S. and Algadhi, S.A. (2004). Warning signs as countermeasures to camel–vehicle collisions in Saudi Arabia. Accid. Anal. Prev. 36: 749–760, https://doi.org/10.1016/j.aap.2003.05.006.Search in Google Scholar PubMed

Almasieh, K., Mohammadi, A., and Alvandi, R. (2022). Identifying core habitats and corridors of a near threatened carnivore, striped hyaena (Hyaena hyaena) in southwestern Iran. Sci. Rep. 12: 3425, https://doi.org/10.1038/s41598-022-07386-y.Search in Google Scholar PubMed PubMed Central

Anderson, R.P. and Gonzalez, Jr., I. (2011). Species-specific tuning increases robustness to sampling bias in models of species distributions: an implementation with Maxent. Ecol. Model. 222: 2796–2811, https://doi.org/10.1016/j.ecolmodel.2011.04.011.Search in Google Scholar

Arumugam, R.A., Wagner, A.P., and Mills, M.G. (2008). Hyaena hyaena. In: IUCN Red List of Threatened Species, Version 2. IUCN.Search in Google Scholar

Ashish, K., Ramesh, T., and Kalle, R. (2022). Striped hyaena den site selection in Nilgiri Biosphere Reserve, India. J. Trop. Ecol. 38: 472–479, https://doi.org/10.1017/s0266467422000396.Search in Google Scholar

Attum, O., Rosenbarger, D., Al Awaji, M., Kramer, A., and Eid, E. (2017). Population size and artificial waterhole use by striped hyenas in the Dana Biosphere Reserve, Jordan. Mammalia 81: 1–5, https://doi.org/10.1515/mammalia-2015-0155.Search in Google Scholar

Aulagnier, S., Bayed, A., Cuzin, F., and Thenevot, M. (2015). Mammals of Morocco: extinctions and declines during the XXth century. Trav. Inst. Sci. 8: 53–67.Search in Google Scholar

Baker, P.J., Boitani, L., Harris, S., Saunders, G., and White, P.C.L. (2008). Terrestrial carnivores and human food production: impact and management. Mamm. Rev. 38: 123–166, https://doi.org/10.1111/j.1365-2907.2008.00122.x.Search in Google Scholar

Barrientos, R. and De Dios Miranda, J. (2012). Can we explain regional abundance and road-kill patterns with variables derived from local-scale road-kill models? Evaluating transferability with the European polecat. Divers. Distrib. 18: 635–647, https://doi.org/10.1111/j.1472-4642.2011.00850.x.Search in Google Scholar

Barthelmess, E.L. (2014). Spatial distribution of road-kills and factors influencing road mortality for mammals in Northern New York State. Biodivers. Conserv. 23: 2491–2514, https://doi.org/10.1007/s10531-014-0734-2.Search in Google Scholar

Bar-Ziv, E., Picardi, S., Kaplan, A., Avgar, T., and Berger-Tal, O. (2022). Sex differences dictate the movement patterns of striped hyenas, Hyaena hyaena, in a human-dominated landscape. Front. Ecol. Evol. 10: 897132, https://doi.org/10.3389/fevo.2022.897132.Search in Google Scholar

Benameur-Hasnaoui, H., Bounaceur, F., Ouabed, A., and Aulagnier, S. (2019). Présence relictuelle de l’hyène rayée Hyaena hyaena (mammalia, hyaenidae) dans l’extrême nord-ouest Algérien. Bull. Soc. Zool. France 141: 51–59.Search in Google Scholar

Bhandari, S., Adhikari, B., Baral, K., Panthi, S., Kunwar, R.M., Thapamagar, T., Psaralexi, M., Bhusal, D.R., and Youlatos, D. (2022). Climate change threatens striped hyena (Hyaena hyaena) distribution in Nepal. Mammal Res. 67: 433–443, https://doi.org/10.1007/s13364-022-00638-2.Search in Google Scholar

Bhandari, S., Bhusal, D.R., Psaralexi, M., and Sgardelis, S. (2021). Habitat preference indicators for striped hyena (Hyaena hyaena) in Nepal. Global Ecol. Conserv. 27: 1–11, https://doi.org/10.1016/j.gecco.2021.e01619.Search in Google Scholar

Bhandari, S., Morley, C., Aryal, A., and Shrestha, U.B. (2020). The diet of the striped hyena in Nepal’s lowland regions. Ecol. Evol. 10: 7953–7962, https://doi.org/10.1002/ece3.6223.Search in Google Scholar PubMed PubMed Central

Bhattacharya, M., Primack, R.B., and Gerwein, J. (2003). Are roads and railroads barriers to bumblebee movement in a temperate suburban conservation area. Biol. Conserv. 109: 37–45, https://doi.org/10.1016/s0006-3207(02)00130-1.Search in Google Scholar

Boitet, E.R. and Mead, A.J. (2014). Application of GIS to a Baseline Survey of vertebrate roadkills in Baldwin County, Georgia. SE Nat. 13: 176–190, https://doi.org/10.1656/058.013.0117.Search in Google Scholar

Boria, R.A., Olson, L.E., Goodman, S.M., and Anderson, R.P. (2014). Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol. Model. 275: 73–77, https://doi.org/10.1016/j.ecolmodel.2013.12.012.Search in Google Scholar

Broekhuis, F., Cushman, S.A., and Elliot, N.B. (2017). Identification of human-carnivore conflict hotspots to prioritize mitigation efforts. Ecol. Evol. 7: 10630–10639, https://doi.org/10.1002/ece3.3565.Search in Google Scholar PubMed PubMed Central

Bunaian, F., Hatoug, A., Ababaneh, D., Yousef, M., and Amr, Z.S. (2001). The carnivores of the northeastern Badia, Jordan. Turkish J. Zool. 25: 19–25.Search in Google Scholar

Cain, A.T., Tuovila, V.R., Hewitt, D.G., and Tewes, M.E. (2003). Effects of a highway and mitigation projects on bobcats in Southern Texas. Biol. Conserv. 114: 189–197, https://doi.org/10.1016/s0006-3207(03)00023-5.Search in Google Scholar

Castelló, J.R. (2020). Hyenas: hyenas and aardwolf. In: Felids and hyenas of the world: wildcats, panthers, lynx, pumas, ocelots, caracals, and relatives. Princeton University Press, New Jersey, pp. 475–514.10.2307/j.ctv11hprnkSearch in Google Scholar

Chapron, G., Kaczensky, P., Linnell, J.D., Von Arx, M., Huber, D., Andrén, H., Al, E., Adamec, M., Álvares, F., Anders, O., et al.. (2014). Recovery of large carnivores in Europe’s modern human-dominated landscapes. Science 346: 1517–1519, https://doi.org/10.1126/science.1257553.Search in Google Scholar PubMed

Clevenger, A.P. and Huijser, M.P. (2011). Wildlife crossing structure handbook: design and evaluation. North America, Washington D.C.Search in Google Scholar

Clevenger, A.P. and Waltho, N. (2005). Performance indices to identify attributes of highway crossing structures facilitating movement of large mammals. Biol. Conserv. 121: 453–464, https://doi.org/10.1016/j.biocon.2004.04.025.Search in Google Scholar

Cobos, M.E., Peterson, A.T., Barve, N., and Osorio-Olvera, L. (2019a). kuenm: an R package for detailed development of ecological niche models using Maxent. Peer J. 7: e6281, https://doi.org/10.7717/peerj.6281.Search in Google Scholar PubMed PubMed Central

Cobos, M.E., Peterson, T.A., Osorio-Olvera, L., and Jiménez-García, D. (2019b). An exhaustive analysis of heuristic methods for variable selection in ecological niche re and species distribution modeling. Ecol. Inf. 53: 100983, https://doi.org/10.1016/j.ecoinf.2019.100983.Search in Google Scholar

Coelho, I.P., Kindel, A., and Coelho, A.V.P. (2008). Roadkills of vertebrate species on two highways through the Atlantic Forest Biosphere Reserve, Southern Brazil. Eur. J. Wildlife Res. 54: 689–699, https://doi.org/10.1007/s10344-008-0197-4.Search in Google Scholar

Colchero, F., Conde, D.A., Manterola, C., Chávez, C., Rivera, A., and Ceballos, G. (2011). Jaguars on the move: modeling movement to mitigate fragmentation from road expansion in the Mayan Forest. Anim. Conserv. 14: 158–166, https://doi.org/10.1111/j.1469-1795.2010.00406.x.Search in Google Scholar

Crooks, K.R. (2002). Relative sensitivities of mammalian carnivores to habitat fragmentation. Conserv. Biol. 16: 488–502, https://doi.org/10.1046/j.1523-1739.2002.00386.x.Search in Google Scholar

Cuyckens, G.a.E., Mochi, L.S., Vallejos, M., Perovic, P.G., and Biganzoli, F. (2016). Patterns and composition of road-killed wildlife in Northwest Argentina. Environ. Manag. 58: 810–820, https://doi.org/10.1007/s00267-016-0755-6.Search in Google Scholar PubMed

Dadashi-Jourdehi, A., Shams-Esfandabad, B., Ahmadi, A., Rezaei, H.R., and Toranj-Zar, H. (2020). Predicting the potential distribution of striped hyena Hyaena hyaena in Iran. Belg. J. Zool. 150: 185–195, https://doi.org/10.26496/bjz.2020.80.Search in Google Scholar

Davies, A.B., Marneweck, D.G., Druce, D.J., and Asner, G.P. (2016). Den site selection, pack composition, and reproductive success in endangered African wild dogs. Behav. Ecol. 27: 1869–1879.10.1093/beheco/arw124Search in Google Scholar

Denneboom, D., Bar-Massada, A., and Shwartz, A. (2023). Wildlife mortality risk posed by high and low traffic roads. Conserv. Biol. 38(2): e14159, https://doi.org/10.1111/cobi.14159.Search in Google Scholar PubMed

Derouiche, L., Bounaceur, F., Benamor, N., Hadjloum, M., Benameur-Hasnaoui, H., Ounas, H., Irzagh, A., Boualem, A., Belmoures, R., Djeghim, C., et al.. (2020). Distribution and status of the striped hyena Hyaena hyaena (Linnaeus, 1758) (mammalia, hyaenidae) in Algeria. Mammalia 84: 421–428, https://doi.org/10.1515/mammalia-2019-0085.Search in Google Scholar

De Siqueira, M.F., Durigan, G., De Marco Júnior, P., and Peterson, A.T. (2009). Something from nothing: using landscape similarity and ecological niche modeling to find rare plant species. J. Nat. Conserv. 17: 25–32, https://doi.org/10.1016/j.jnc.2008.11.001.Search in Google Scholar

Dhiab, O. and Selmi, S. (2021). Patterns of vertebrate road-kills in a pre-Saharan Tunisian area. J. Arid Environ. 193: 104595, https://doi.org/10.1016/j.jaridenv.2021.104595.Search in Google Scholar

Dickman, A.J. (2010). Complexities of conflict: the importance of considering social factors for effectively resolving human-wildlife conflict. Anim. Conserv. 13: 458–466, https://doi.org/10.1111/j.1469-1795.2010.00368.x.Search in Google Scholar

Dodd, Jr., C.K., Barichivich, W.J., and Smith, L.L. (2004). Effectiveness of abarrier wall and culverts in reducing wildlife mortality on a heavily traveled highway in Florida. Biol. Conserv. 118: 619–631, https://doi.org/10.1016/j.biocon.2003.10.011.Search in Google Scholar

Eriksson, T. and Dalerum, F. (2018). Identifying potential areas for an expanding wolf population in Sweden. Biol. Conserv. 220: 170–181, https://doi.org/10.1016/j.biocon.2018.02.019.Search in Google Scholar

Fabrizio, M., Di Febbraro, M., D’amico, M., Frate, L., Roscioni, F., and Loy, A. (2019). Habitat suitability vs landscape connectivity determining roadkill risk at a regional scale: a case study on European badger (Meles meles). Eur. J. Wildlife Res. 65: 1–10, https://doi.org/10.1007/s10344-018-1241-7.Search in Google Scholar

Ford, A.T. and Fahrig, L. (2007). Diet and body size of North American mammal road mortalities. Transport. Res. Part D: Transport Environ. 12: 498–505, https://doi.org/10.1016/j.trd.2007.07.002.Search in Google Scholar

Gade, D.W. (2006). Hyenas and humans in the Horn of Africa. Geogr. Rev. 96: 609–632, https://doi.org/10.1111/j.1931-0846.2006.tb00519.x.Search in Google Scholar

Gajera, N., Dave, S.M., and Nishith, D. (2009). Feeding pattern and den ecology of striped hyena. Tiger Pap. 36: 13–17.Search in Google Scholar

Glista, D.J., Devault, T.L., and Dewoody, J.A. (2009). A review of mitigation measures for reducing wildlife mortality on roadways. Landsc. Urban Plann. 91: 1–7, https://doi.org/10.1016/j.landurbplan.2008.11.001.Search in Google Scholar

Grilo, C., Bissonette, J.A., and Santos‐Reis, M. (2009). Spatial-temporal patterns in Mediterranean carnivore road casualties: consequences for mitigation. Biol. Conserv. 142: 301–313, https://doi.org/10.1016/j.biocon.2008.10.026.Search in Google Scholar

Grilo, C., Smith, D.J., and Klar, N. (2015). Carnivores: struggling for survival in roaded landscape. In: Handbook of road ecology. John Wiley & Sons, pp. 300–312.10.1002/9781118568170.ch35Search in Google Scholar

Grilo, C., Sousa, J., Ascensão, F., Matos, H., Leitão, I., Pinheiro, P., Costa, M., Bernardo, J., Reto, D., Lourenço, R., et al.. (2012). Individual spatial responses towards roads: implications for mortality risk. PLoS One 7: e43811, https://doi.org/10.1371/journal.pone.0043811.Search in Google Scholar PubMed PubMed Central

Guisan, A., Broennimann, O., Engler, R., Vus, T.M., Yoc Coz, N.G., Lehmann, A., and Zimmermann, N.E. (2006). Using niche-based models to improve the sampling of rare species. Conserv. Biol. 20: 501–511, https://doi.org/10.1111/j.1523-1739.2006.00354.x.Search in Google Scholar PubMed

Hadad, E., Kosicki, J.Z., and Yosef, R. (2023). Spatial modeling of road collisions of striped hyena (Hyaena hyaena) in Israel. Ecol. Res. 38(5): 664–675, https://doi.org/10.1111/1440-1703.12399.Search in Google Scholar

Hannachi, A. and Fenni, M. (2013). Etude floristique et écologique des mauvaises herbes des cultures de la région de Batna (Algérie). Rev. Agric. 5: 24–36.Search in Google Scholar

Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., and Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. Int. J. Climotol. 25: 1965–1978, https://doi.org/10.1002/joc.1276.Search in Google Scholar

Hirzel, A.H., Hausser, J., Chessel, D., and Perrin, N. (2002). Ecological-niche factoranalysis: how to compute habitat-suitability maps without absence data? Ecology 83: 2027–2036, https://doi.org/10.2307/3071784.Search in Google Scholar

International Steering Committee for Global Mapping, The National Institute of Cartography and Remote Sensing, Algeria (2009a). Roads, Algeria, 2009 [Shapefile], Retrieved from https://kurma-monitor-prod.stanford.edu/catalog/stanford-jt633ws7609.Search in Google Scholar

International Steering Committee for Global Mapping, The National Institute of Cartography and Remote Sensing, Algeria (2009b). Rivers, Algeria, 2009, [Shapefile]. Available at https://kurma-monitor-prod.stanford.edu/catalog/stanford-wk281mf6791.Search in Google Scholar

International Steering Committee for Global Mapping (ISCGM). (2004). Algeria Inland Waters, 2004 [Shapefile]. Available at https://kurma-monitor-prod.stanford.edu/catalog/sde-columbia-iscgm_algeria_2004_water.Search in Google Scholar

Jackson, C.R., Power, R.J., Groom, R.J., Masenga, E.H., Mjingo, E.E., Fyumagwa, R.D., Roskaft, E., and Davies-Mostert, H. (2014). Heading for the hills: risk avoidance drives den site selection in African wild dogs. PLoS One 9: e99686, https://doi.org/10.1371/journal.pone.0099686.Search in Google Scholar PubMed PubMed Central

Jackson, N.D. and Fahrig, L. (2011). Relative effects of road mortality and decreased connectivity on population genetic diversity. Biol. Conserv. 144: 3143–3148, https://doi.org/10.1016/j.biocon.2011.09.010.Search in Google Scholar

Jackson, S.D. and Griffin, C.R. (2000) A strategy for mitigating highway impacts on wildlife. In: Messmer, T.A., and West, B. (Eds.). Wildlife and highways: seeking solutions to an ecological and socio-economic dilemma. The Wildlife Society, Bethesda, MD.Search in Google Scholar

Jaeger, J.a.G. and Fahrig, L. (2004). Effects of road fencing on population persistence. Conserv. Biol. 18: 1651–1657, https://doi.org/10.1111/j.1523-1739.2004.00304.x.Search in Google Scholar

Kaboodvandpour, S., Almasieh, K., and Zamani, N. (2021). Habitat suitability and connectivity implications for the conservation of the Persian leopard along the Iran–Irak border. Ecol. Evol. 11: 13464–13474, https://doi.org/10.1002/ece3.8069.Search in Google Scholar PubMed PubMed Central

Kannan, P., Salaria, S., Khan, S., Mark, T., Baberwal, N., Bhatnagar, A., Shethia, Y., Thatte, P., and Chanchani, P. (2022). Assessing carnivore occurrence and community attitudes towards wildlife in a multi-use arid landscape corridor. Front. Conserv. Sci. 2, https://doi.org/10.3389/fcosc.2021.787431.Search in Google Scholar

Kasparek, M., Kasparek, A., Gözcelioğlu, B., Çolak, E., and Yiğit, N. (2004). On the status and distribution of the striped Hyaena, Hyaena hyaena, in Turkey. Zool. Middle East 33: 93–108, https://doi.org/10.1080/09397140.2004.10638068.Search in Google Scholar

Kingdon, J.S. (2003). The Kingdon field guide to African mammals. Christopher Helm Publishers, London.Search in Google Scholar

Klar, N., Herrmann, M., and Kramer‐Schadt, S. (2009). Effects and mitigation of road impacts on individual movement behavior of wildcats. J. Wildlife Manag. 73: 631–638, https://doi.org/10.2193/2007-574.Search in Google Scholar

Kremen, C., Cameron, A., Moilanen, A., Phillips, S.J., Thomas, C.D., Beentje, H., Dransfield, J., Fisher, B.L., Glaw, F., Good, T.C., et al.. (2008). Aligning conservation priorities across taxa in Madagascar with high-resolution planning tools. Science 320: 222–226, https://doi.org/10.1126/science.1155193.Search in Google Scholar PubMed

Kuhn, B. (2005). The faunal assemblages and taphonomic signatures of five striped Hyaena (hyaena hyaena syriaca) dens in the desert of eastern Jordan. Levant 37: 221–234, https://doi.org/10.1179/lev.2005.37.1.221.Search in Google Scholar

Kumar, S. and Stohlgren, T.J. (2009). MaxEnt modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. J. Ecol. Nat. Environ. 1: 94–98.Search in Google Scholar

Kushwaha, S.P.S. (2002) Published. Geoinformatics for wildlife habitat characterization. In Proceedings of Map India. 5th Annual International Conference, New Delhi.Search in Google Scholar

Lala, F., Chiyo, P.I., Kanga, E., Omondi, P., Ngene, S., Severud, W.J., Morris, A.W., and Bump, J. (2021). Wildlife roadkill in the Tsavo ecosystem, Kenya: identifying hotspots, potential drivers, and affected species. Heliyon 7: e06364, https://doi.org/10.1016/j.heliyon.2021.e06364.Search in Google Scholar PubMed PubMed Central

Laurance, W.F., Clements, G.R., Sloan, S., O’connell, C.S., Mueller, N.D., Goosem, M., Venter, O., Edwards, D.P., Phalan, B., Balmford, A., et al.. (2014). A global strategy for road building. Nature 513: 229–232, https://doi.org/10.1038/nature13717.Search in Google Scholar PubMed

Lecis, R. and Norris, K. (2003). Habitat correlates of distribution and local population decline of the endemic Sardinian new Euproctus platycephalus. Biol. Conserv. 115: 303–317, https://doi.org/10.1016/s0006-3207(03)00149-6.Search in Google Scholar

Liu, J., Fitzgerald, M., Liao, H., Luo, Y., Jin, T., Li, X., Yang, X., Hirata, S., and Matsuzawa, T. (2019). Modeling habitat suitability for Yunnan Snub-nosed monkeys in Laojun Mountain National Park. Primates 61: 277–287, https://doi.org/10.1007/s10329-019-00767-4.Search in Google Scholar PubMed

Longcore, T. and Catherine, R. (2016). Artificial night lighting and protected lands: ecological effects and management approaches. Natural Resource Report NPS/NRSS/NSNS/NRR—2016/1213. Fort Collins, Colorado.Search in Google Scholar

Malo, J.E., Suárez, F., and Díez, A. (2004). Can we mitigate animal–vehicle accidents using predictive models? J. Appl. Ecol. 41: 701–710, https://doi.org/10.1111/j.0021-8901.2004.00929.x.Search in Google Scholar

Mandal, D., Chatterjee, D., Qureshi, Q., and Sankar, K. (2018). Behavioural observations on interaction of leopard and striped hyena, Western India. CAT News 67: 20–21.Search in Google Scholar

Mech, L.D. and Boitoni, L. (2003). Wolf social ecology. Wolves: behavior, ecology and conservation. University of Chicago Press, Chicago, IL.10.7208/chicago/9780226516981.001.0001Search in Google Scholar

Mohammadi, A., Almasieh, K., Clevenger, A.P., Fatemizadeh, F., Rezaei, A., Jowkar, H., and Kaboli, M. (2018). Road expansion: a challenge to conservation of mammals, with particular emphasis on the endangered Asiatic cheetah in Iran. J. Nat. Conserv. 43: 8–18, https://doi.org/10.1016/j.jnc.2018.02.011.Search in Google Scholar

Mohammadi, A., Almasieh, K., Nayeri, D., Adibi, M.A., and Wan, H.Y. (2022). Comparison of habitat suitability and connectivity modelling for three carnivores of conservation concern in an Iranian montane landscape. Landsc. Ecol. 37: 411–430, https://doi.org/10.1007/s10980-021-01386-5.Search in Google Scholar

Mohammadi, A. and Kaboli, M. (2016). Evaluating wildlife–vehicle collision hotspots using kernel-based estimation: a focus on the endangered Asiatic cheetah in central Iran. Human-Wild. Interact. 10: 103–109.Search in Google Scholar

Monchot, H. and Mashkour, M. (2010). Hyenas around the city (Kashan, Iran). J. Taphonomy 8: 17–32.Search in Google Scholar

Mondal, K., Sankar, K., and Qureshi, Q. (2012). Factors influencing the distribution of leopard in a semiarid landscape of Western India. Acta Theriol. 58: 179–187, https://doi.org/10.1007/s13364-012-0109-6.Search in Google Scholar

Mortelliti, A. and Boitani, L. (2008). Interaction of food resources and landscape structure in determining the probability of patch use by carnivores in fragmented landscapes. Landsc. Ecol. 23: 285–298, https://doi.org/10.1007/s10980-007-9182-7.Search in Google Scholar

Mukherjee, T., Chongder, I., Ghosh, S., Dutta, A., Singh, A., Dutta, R., Joshi, B.D., Thakur, M., Sharma, L.K., Venkatraman, C., et al.. (2021). Indian Grey Wolf and Striped Hyaena sharing from the same bowl: high niche overlap between top predators in a human-dominated landscape. Global Ecol. Conserv. 28: e01682, https://doi.org/10.1016/j.gecco.2021.e01682.Search in Google Scholar

O’brien, R.C., Larcombe, A., Meyer, J., Forbes, S.L., and Dadour, I. (2010). The scavenging behaviour of the Australian Raven (Corvus coronoides): patterns and influencing factors. Sylvia 46, 133–148.Search in Google Scholar

Panda, D., Mohanty, S., Suryan, T., Pandey, P., Lee, H., and Singh, R. (2022). High striped hyena density suggests coexistence with humans in an agricultural landscape, Rajasthan. PLoS One 17: e0266832, https://doi.org/10.1371/journal.pone.0266832.Search in Google Scholar PubMed PubMed Central

Panda, D., Sharma, S., Mohanty, S., Kumar, A., Suryan, T., Shukla, M., Pandey, P., Lee, H., and Singh, R. (2023). Dietary preference of striped hyena in the anthropogenic landscape of Rajasthan, India. Acta Ecol. Sinica 43: 1067–1073, https://doi.org/10.1016/j.chnaes.2023.03.002.Search in Google Scholar

Peach, D.a.H., Almond, M., and Pol, J.C. (2019). Modeled distributions of Aedes japonicus japonicus and Aedes togoi (Diptera: Culicidae) in the United States, Canada, and Northern Latin America. J. Vector Ecol. 44: 119–129, https://doi.org/10.1111/jvec.12336.Search in Google Scholar PubMed

Pearson, R.G., Raxworthy, C.J., Nakamura, M., and Peterson, A.T. (2007). Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J. Biogeogr. 34: 102–117, https://doi.org/10.1111/j.1365-2699.2006.01594.x.Search in Google Scholar

Peterson, A.T., Papeş, M., and Soberón, J. (2008). Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol. Model. 213: 63–72, https://doi.org/10.1016/j.ecolmodel.2007.11.008.Search in Google Scholar

Peterson, A.T., Sánchez-Cordero, V., Soberón, J., Bartley, J., Buddemeier, R.H., and Navarro-Sigüenza, A.G. (2001). Effects of global climate change on geographic distributions of Mexican Cracidae. Ecol. Model. 144: 21–30, https://doi.org/10.1016/s0304-3800(01)00345-3.Search in Google Scholar

Phillips, S.J., Anderson, R.P., and Schapire, R. (2006). Maximum entropy modelling of species geographic distributions. Ecol. Model. 190: 231–259, https://doi.org/10.1016/j.ecolmodel.2005.03.026.Search in Google Scholar

Qarqaz, M.A., Abu Baker, M.A., and Amr, Z.S. (2004). Status and ecology of the striped hyaena, Hyaena hyaena, in Jordan. Zool. Middle East 33: 87–92, https://doi.org/10.1080/09397140.2004.10638067.Search in Google Scholar

Rabinowitz, A. and Zeller, K.A. (2010). A range-wide model of landscape connectivity and conservation for the Jaguar, Panthera onca. Biol. Conserv. 143: 939–945, https://doi.org/10.1016/j.biocon.2010.01.002.Search in Google Scholar

Ramp, D., Caldwell, J., Edwards, K.A., Warton, D., and Croft, D.B. (2005). Modelling of wildlife fatality hotspots along the Snowy Mountain Highway in New South Wales, Australia. Biol. Conserv. 126: 474–490, https://doi.org/10.1016/j.biocon.2005.07.001.Search in Google Scholar

Ray, J.C., Hunter, L., and Zigouris, J. (2005). Setting conservation and research priorities for larger African carnivores. Wildlife Conservation Society, New York.Search in Google Scholar

Rezaei, S., Mohammadi, A., Malakoutikhah, S., and Khosravi, R. (2022). Combining multiscale niche modeling, landscape connectivity, and gap analysis to prioritize habitats for conservation of striped hyaena (Hyaena hyaena). PLoS One 17: e0260807, https://doi.org/10.1371/journal.pone.0260807.Search in Google Scholar PubMed PubMed Central

Rezaei, S., Naderi, S., and Karami, P. (2017). The ecological state study of the striped hyena (Hyaena hyaena) denning regions in Haftadgholeh protected area using maximum entropy method. J. Nat. Environ. (Iran. J. Nat. Ressour.) 70: 351–362.Search in Google Scholar

Ripple, W.J., Estes, J.A., Beschta, R.L., Wilmers, C.C., Ritchie, E.G., Hebblewhite, M., Berger, J., Elmhagen, B., Letnic, M., Nelson, M.P., et al.. (2014). Status and ecological effects of the world’s largest carnivores. Science 343: 1241484, https://doi.org/10.1126/science.1241484.Search in Google Scholar PubMed

Roger, E., Bino, G., and Ramp, D. (2012). Linking habitat suitability and road mortalities across geographic ranges. Landsc. Ecol. 27: 1167–1181, https://doi.org/10.1007/s10980-012-9769-5.Search in Google Scholar

Rytwinski, T. and Fahrig, L. (2010). Reproductive rate and body size predict road impacts on mammal abundance. Ecol. Appl. 21: 589–600, https://doi.org/10.1890/10-0968.1.Search in Google Scholar PubMed

Schroder, B. and Richter, O. (2000). Are habitat models transferable in space and time? J. Nat. Conserv. 8: 195–205.Search in Google Scholar

Schwartz, A.L.W., Shilling, F.M., and Perkins, S.E. (2020). The value of monitoring wildlife roadkill. Eur. J. Wildl. Res. 66: 1–12, https://doi.org/10.1007/s10344-019-1357-4.Search in Google Scholar

Schwartz, A.L.W., Williams, H.F., Chadwick, E., Thomas, R.J., and Perkins, S.E. (2018). Roadkill scavenging behaviour in an urban environment. J. Urban Ecol. 4: 1–7, https://doi.org/10.1093/jue/juy006.Search in Google Scholar

Shcheglovitova, M. and Anderson, R.P. (2013). Estimating optimal complexity for ecological niche models: a jackknife approach for species with small sample sizes. Ecol. Model. 269: 9–17, https://doi.org/10.1016/j.ecolmodel.2013.08.011.Search in Google Scholar

Singh, P. (2008). Population density and feeding ecology of the striped hyena (Hyaena hyaena) in relation to land use patterns in an arid region of Rajasthan. Master of Science in Wildlife Biology and Conservation, Manipal University.Search in Google Scholar

Singh, P., Gopalaswamy, A.M., and Karanth, K.U. (2010). Factors influencing densities of striped hyenas (Hyaena hyaena) in arid regions of India. J. Mammal. 91: 1152–1159, https://doi.org/10.1644/09-mamm-a-159.1.Search in Google Scholar

Singh, R., Qureshi, Q., Sankar, K., Krausman, P.R., Goyal, S.P., and Nicholson, K.L. (2014). Population density of striped hyenas in relation to habitat in a semi-arid landscape, Western India. Acta Theriol. 59: 521–527, https://doi.org/10.1007/s13364-014-0187-8.Search in Google Scholar

Snow, N.P., Williams, D.M., and Porter, W.F. (2014). A landscape-based approach for delineating hotspots of wildlife–vehicle collisions. Landsc. Ecol. 29: 817–829, https://doi.org/10.1007/s10980-014-0018-y.Search in Google Scholar

Sun, Y., Wang, Y., Yuan, K., Chan, T.O., and Huang, Y. (2020). Discovering spatio-temporal clusters of road collisions using the method of fast Bayesian model-based cluster detection. Sustainability 12: 1–15, https://doi.org/10.3390/su12208681.Search in Google Scholar

Swanepoel, L.H., Lindsey, P., Somers, M.J., Van Hoven, W., Dalerum, F., Pettorelli, N., and Penteriani, V. (2012). Extent and fragmentation of suitable leopard habitat in South Africa. Anim. Conserv. 16: 41–50, https://doi.org/10.1111/j.1469-1795.2012.00566.x.Search in Google Scholar

Switalski, T.A. and Nelson, C.R. (2011). Efficacy of road removal for restoring wildlife habitat: black bear in the Northern Rocky Mountains, USA. Biol. Conserv. 144: 2666–2673, https://doi.org/10.1016/j.biocon.2011.07.026.Search in Google Scholar

Team, R.D.C. (2021). R: a language and environmental for statistical computing, 3.6.1 ed. R Foundation for Statistical Computing, Vienna, Austria.Search in Google Scholar

Thomaes, A., Kervyn, T., and Maes, D. (2008). Applying species distribution modelling for the conservation of the threatened saproxylic Stag Beetle (Lucanus cervus). Biol. Conserv. 141: 1400–1410, https://doi.org/10.1016/j.biocon.2008.03.018.Search in Google Scholar

Tourani, M., Moqanaki, E.M., and Kiabi, B.H. (2012). Vulnerability of striped hyaenas, Hyaena hyaena, in a human-dominated landscape of Central Iran. Zool. Middle East 56: 134–138, https://doi.org/10.1080/09397140.2012.10648948.Search in Google Scholar

Tryjanowski, P., Beim, M., Kubicka, A.M., Morelli, F., Sparks, T.H., and Sklenicka, P. (2021). On the origin of species on road warning signs: a global perspective. Global Ecol. Conserv. 27: e01600, https://doi.org/10.1016/j.gecco.2021.e01600.Search in Google Scholar

Van Der Ree, R., Smith, D.J., Grilo, C., VanderRee, R., Smith, D.J., et al. (2015). Chapter 1: The ecological effects of linear infrastructure and traffic: challenges and opportunities of rapid global growth. John Wiley & Sons, New Jersey.10.1002/9781118568170.ch1Search in Google Scholar

Van Langevelde, F. and Jaarsma, C.F. (2004). Using traffic flow theory to model traffic mortality in mammals. Landsc. Ecol. 19: 895–907, https://doi.org/10.1007/s10980-005-0464-7.Search in Google Scholar

Wagner, A. P. (2006). Behavioral Ecologyof the striped Hyena (Hyaena hyaena). PhD thesis, Montana State UniversitySearch in Google Scholar

Wagner, A.P., Creel, S., and Kalinowski, S.T. (2006). Estimating relatedness and relationships using microsatellite loci with null alleles. Heredity (Edinb) 97: 336–345, https://doi.org/10.1038/sj.hdy.6800865.Search in Google Scholar PubMed

Warren, D.L., Glor, R.E., and Turelli, M. (2010). ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33: 607–611, https://doi.org/10.1111/j.1600-0587.2009.06142.x.Search in Google Scholar

Warren, D. L. and Seifert, S. N. (2011). Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol. App. 21: 335–342.10.1890/10-1171.1Search in Google Scholar PubMed

Warren, D.L., Wright, A.N., Seifert, S.N., and Shaffer, B.H. (2014). Incorporating model complexity and spatial sampling bias into ecological niche models of climate change risks faced by 90 California vertebrate species of concern. Divers. Distrib. 20: 334–343, https://doi.org/10.1111/ddi.12160.Search in Google Scholar

Weng, L., Boedhihartono, A.K., Dirks, P.H.G.M., Dixon, J., Lubis, M.I., and Sayer, J.A. (2013). Mineral industries, growth corridors and agricultural development in Africa. Global Food Secur. 2: 195–202, https://doi.org/10.1016/j.gfs.2013.07.003.Search in Google Scholar

Wolf, C. and Ripple, W.J. (2017). Range contractions of the world’s large carnivores. R. Soc. Open Sci. 4: 170052, https://doi.org/10.1098/rsos.170052.Search in Google Scholar PubMed PubMed Central

Yovel, Y. and Ulanvosky, N. (2017) Bat navigation. In: Byrne, J.H. (Ed.). Learning and memory: a comprehensive reference, 2nd ed. Academic Press, Cambridge, MA, USA.10.1016/B978-0-12-809324-5.21031-6Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/mammalia-2022-0095).


Received: 2022-08-11
Accepted: 2024-04-16
Published Online: 2024-05-10

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.5.2024 from https://www.degruyter.com/document/doi/10.1515/mammalia-2022-0095/html
Scroll to top button