Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 27, 2023

A practical upper-bound efficiency model for solar power plants

  • Eduardo González-Mora ORCID logo EMAIL logo , Ram Poudel and María Dolores Durán-García ORCID logo

Abstract

A generalized model for the maximum work rate extractable from the Sun is developed considering a reversible and an endoreversible system to define a more practical upper-bound efficiency for the conversion of solar radiation into work and power. This model is based on a photo-thermal work extractor in communication with a high-temperature radiation reservoir and a low-temperature heat sink. Following the model, a parametric analysis of the concentration acceptance product (ξ) and thermal conductance is performed to identify the interdependence of variables for the solar exergy. The results are compared with existing models to provide a practical baseline of work and power extractable from concentrated solar power plants (CSP) technologies. Therefore, it is possible to quantify the irreversibilities of an idealized thermodynamic system operating between the Sun and the absorber (via radiative transfer) and the environment (via convective transfer).


Corresponding author: Eduardo González-Mora, Facultad de Ingeniería, Ingeniería en Sistemas Energéticos Sustentables, Universidad Autónoma del Estado de México, Toluca, México, E-mail:

Funding source: CONACyT Graduate Scholarship for EGM https://doi.org/10.13039/501100003141

Award Identifier / Grant number: 863595

Acknowledgement

EGM would like to acknowledge the participants at Thermodynamics 2.0 | 2020 and 2022 conferences for the fruitful discussions about finite-time thermodynamics.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: CONACyT Graduate Scholarship for EGM (863595). https://doi.org/10.13039/501100003141.

  3. Conflict of interest statement: The authors have no conflicts to disclose.

References

[1] A. Bejan, Freedom and Evolution, Cham, Springer International Publishing, 2020.10.1007/978-3-030-34009-4Search in Google Scholar

[2] A. Sharma, “A comprehensive study of solar power in India and world,” Renewable Sustainable Energy Rev., vol. 15, no. 4, pp. 1767–1776, 2011. https://doi.org/10.1016/j.rser.2010.12.017.Search in Google Scholar

[3] M. H. Ahmed and A. M. A. Amin, “Thermal analysis of the performance of linear fresnel solar concentrator,” J. Clean Energy Technol., vol. 4, no. 5, pp. 316–320, 2015. https://doi.org/10.18178/JOCET.2016.4.5.304.Search in Google Scholar

[4] D. Arvizu, P. Balaya, L. Cabzeza, et al.., “Direct solar energy,” in IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation, O. Edenhofer, R. Pichs-Madruga, Y. Sokona, Eds., et al.., Cambridge, Cambridge University Press, 2011, pp. 333–400.Search in Google Scholar

[5] M. Bošnjaković and V. Tadijanović, “Environment impact of a concentrated solar power plant,” Teh. Glas., vol. 13, no. 1, pp. 68–74, 2019. https://doi.org/10.31803/tg-20180911085644.Search in Google Scholar

[6] N. Caldés and Y. Lechón, “Socio-economic and environmental assessment of concentrating solar power systems,” in Concentrating Solar Power Technology, 2nd ed. Amsterdam, Elsevier, 2021, pp. 127–162.10.1016/B978-0-12-819970-1.00003-7Search in Google Scholar

[7] IRENA, Renewable Power Generation Costs in 2021, Abu Dhabi, International Renewable Energy Agency, Tech. Rep., 2022. Available at: https://www.irena.org/publications/2021/Jun/Renewable-Power-Costs-in-2020.Search in Google Scholar

[8] K. Lovegrove and W. Stein, “Introduction to concentrating solar power technology,” in Concentrating Solar Power Technology, K. Lovegrove and W. Stein, 2nd ed. Amsterdam, Elsevier, 2021, Chap. 1, pp. 3–17.10.1016/B978-0-12-819970-1.00012-8Search in Google Scholar

[9] M. Schlecht and R. Meyer, “Site selection and feasibility analysis for concentrating solar power systems,” in Concentrating Solar Power Technology, 2nd ed. Amsterdam, Elsevier, 2021, pp. 99–125.10.1016/B978-0-12-819970-1.00015-3Search in Google Scholar

[10] NREL, Concentrating Solar Power Projects, 2013. Available at: https://solarpaces.nrel.gov/ [accessed: Sep. 29, 2020].Search in Google Scholar

[11] IRENA, Solar Energy, 2022. Available at: https://www.irena.org/solar [accessed: Aug. 13, 2022].Search in Google Scholar

[12] T. J. Kotas, The Exergy Method of Thermal Plant Analysis, Amsterdam, Elsevier, 1985, pp. 29–56.10.1016/B978-0-408-01350-5.50009-XSearch in Google Scholar

[13] J. Szargut, Exergy Method: Technical and Ecological Applications, vol. 18, Southampton, WIT press, 2005.Search in Google Scholar

[14] E. Rodríguez, J. M. Cardemil, A. R. Starke, and R. Escobar, “Modelling the exergy of solar radiation: a review,” Energies, vol. 15, no. 4, p. 1477, 2022. https://doi.org/10.3390/en15041477.Search in Google Scholar

[15] R. Petela, “Eksergia promieniowania cieplnego,” Ph.D. thesis, Gliwice, Faculty of Mechanical Energy Technology, Silesian Technical University, 1961.Search in Google Scholar

[16] W. H. Press, “Theoretical maximum for energy from direct and diffuse sunlight,” Nature, vol. 264, no. 5588, pp. 734–735, 1976. https://doi.org/10.1038/264734a0.Search in Google Scholar

[17] P. T. Landsberg and J. R. Mallinson, “Thermodynamic constraints, effective temperatures and solar cells,” in International Conference on Solar Electricity, 1976, pp. 27–42.Search in Google Scholar

[18] S. Kabelac, “A new look at the maximum conversion efficiency of black-body radiation,” Sol. Energy, vol. 46, no. 4, pp. 231–236, 1991. https://doi.org/10.1016/0038-092x(91)90067-7.Search in Google Scholar

[19] V. Badescu, “Simple upper bound efficiencies for endoreversible conversion of thermal radiation,” J. Non-Equilib. Thermodyn., vol. 24, no. 2, pp. 196–202, 1999. https://doi.org/10.1515/JNET.1999.011.Search in Google Scholar

[20] Y. Candau, “On the exergy of radiation,” Sol. Energy, vol. 75, no. 3, pp. 241–247, 2003. https://doi.org/10.1016/j.solener.2003.07.012.Search in Google Scholar

[21] D. C. Spanner, Introduction to Thermodynamics. Experimental Botany: An International Series of Monographs, Massachusetts, Academic Press, 1964.Search in Google Scholar

[22] N. A. Leontovich, “Maximum efficiency of direct utilization of radiation,” Sov. Phys. Usp., vol. 17, no. 6, pp. 963–964, 1975. https://doi.org/10.1070/pu1975v017n06abeh004417.Search in Google Scholar

[23] J. A. Gribik and J. F. Osterle, “The second law efficiency of solar energy conversion,” J. Sol. Energy Eng., vol. 106, no. 1, pp. 16–21, 1984. https://doi.org/10.1115/1.3267555.Search in Google Scholar

[24] J. E. Parrott, “Theoretical upper limit to the conversion efficiency of solar energy,” Sol. Energy, vol. 21, no. 3, pp. 227–229, 1978. https://doi.org/10.1016/0038-092X(78)90025-7.Search in Google Scholar

[25] S. M. Jeter, “Maximum conversion efficiency for the utilization of direct solar radiation,” Sol. Energy, vol. 26, no. 3, pp. 231–236, 1981. https://doi.org/10.1016/0038-092x(81)90207-3.Search in Google Scholar

[26] A. Bejan, “Unification of three different theories concerning the ideal conversion of enclosed radiation,” J. Sol. Energy Eng., vol. 109, no. 1, pp. 46–51, 1987. https://doi.org/10.1115/1.3268177.Search in Google Scholar

[27] J. Singh and S. P. Foo, “On the thermodynamic efficiency of solar energy converters: solar cells,” J. Appl. Phys., vol. 59, no. 5, pp. 1678–1681, 1986. https://doi.org/10.1063/1.336430.Search in Google Scholar

[28] V. Bădescu, “How much work can be extracted from a radiation reservoir?” Phys. A, vol. 410, pp. 110–119, 2014. https://doi.org/10.1016/j.physa.2014.05.024.Search in Google Scholar

[29] C. Zamfirescu and I. Dincer, “How much exergy one can obtain from incident solar radiation?” J. Appl. Phys., vol. 105, no. 4, p. 044911, 2009. https://doi.org/10.1063/1.3081637.Search in Google Scholar

[30] T. Baracu, M. Patrascu, C. Teodosiu, et al.., “Deterministic matrix-based radiative design using a new general formulation of exergy and exergy efficiency for hybrid solar collectors,” Appl. Therm. Eng., vol. 182, p. 115318, 2021. https://doi.org/10.1016/j.applthermaleng.2020.115318.Search in Google Scholar

[31] J. E. Parrott, “Letter to the editor,” Sol. Energy, vol. 22, no. 6, pp. 572–573, 1979. https://doi.org/10.1016/0038-092X(79)90033-1.Search in Google Scholar

[32] A. Wexler, “Letter to the editor,” Sol. Energy, vol. 22, no. 6, p. 572, 1979. https://doi.org/10.1016/0038-092X(79)90032-X.Search in Google Scholar

[33] R. Zhang, Y. Zhou, B. Xiang, et al.., “Scalable carbon black enhanced nanofiber network films for high-efficiency solar steam generation,” Adv. Mater. Interfaces, vol. 8, no. 24, p. 2101160, 2021. https://doi.org/10.1002/admi.202101160.Search in Google Scholar

[34] M. Temiz and I. Dincer, “A newly developed solar-based cogeneration system with energy storage and heat recovery for sustainable data centers: energy and exergy analyses,” Sustain. Energy Technol. Assess., vol. 52, p. 102145, 2022. https://doi.org/10.1016/j.seta.2022.102145.Search in Google Scholar

[35] M. J. Montes, R. Abbas, R. Barbero, and A. Rovira, “A new design of multi-tube receiver for Fresnel technology to increase the thermal performance,” Appl. Therm. Eng., vol. 204, p. 117970, 2022. https://doi.org/10.1016/j.applthermaleng.2021.117970.Search in Google Scholar

[36] Y. Khan and R. S. Mishra, “Performance analysis of solar driven combined recompression main compressor intercooling supercritical CO2 cycle and organic Rankine cycle using low GWP fluids,” Energy Built Environ., vol. 3, no. 4, pp. 496–507, 2022. https://doi.org/10.1016/j.enbenv.2021.05.004.Search in Google Scholar

[37] W. Bai, H. Li, X. Zhang, et al.., “Thermodynamic analysis of CO2–SF6 mixture working fluid supercritical Brayton cycle used for solar power plants,” Energy, vol. 261, p. 124780, 2022. https://doi.org/10.1016/j.energy.2022.124780.Search in Google Scholar

[38] M. Temiz and I. Dincer, “Development of solar and wind based hydrogen energy systems for sustainable communities,” Energy Convers. Manage., vol. 269, p. 116090, 2022. https://doi.org/10.1016/j.enconman.2022.116090.10.1016/j.enconman.2022.116090Search in Google Scholar

[39] A. Bejan, Advanced Engineering Thermodynamics, 4th ed. N. J. Hoboken, Ed., New Jersey, Wiley, 2016.10.1002/9781119245964Search in Google Scholar

[40] E. P. Gyftopoulos and G. P. Beretta, Thermodynamics: Foundations and Applications, New York, Dover, 2005.Search in Google Scholar

[41] S. Carnot, Réflexions sur la puissance motrice du feu. Académie internationale d’histoire des sciences, Paris, Collection des travaux, 1824.Search in Google Scholar

[42] J. H. Cotterill, The Steam Engine Considered as a Thermodynamic Machine: A Treatise on the Thermodynamic Efficiency of Steam Engines, 2nd ed. London, E. & F. N. Spon, 1896.Search in Google Scholar

[43] P. Chambadal, Récupération de chaleura la sortie d’un réacteur, Chapter 3, Paris, Armand Colin, 1957.Search in Google Scholar

[44] I. I. Novikov, “Efficiency of an atomic power generating installation,” Sov. J. At. Energy, vol. 3, no. 11, pp. 1269–1272, 1957. https://doi.org/10.1007/BF01507240.Search in Google Scholar

[45] H. A. Müser, “Thermodynamische behandlung von elektronenprozessen in halbleiter-randschichten,” Z. Phys., vol. 148, no. 3, pp. 380–390, 1957.10.1007/BF01325571Search in Google Scholar

[46] F. L. Curzon and B. Ahlborn, “Efficiency of a Carnot engine at maximum power output,” Am. J. Phys., vol. 43, no. 1, pp. 22–24, 1975. https://doi.org/10.1119/1.10023.Search in Google Scholar

[47] G. De Mey and A. De Vos, “On the optimum efficiency of endoreversible thermodynamic processes,” J. Phys. D: Appl. Phys., vol. 27, no. 4, pp. 736–739, 1994. https://doi.org/10.1088/0022-3727/27/4/010.Search in Google Scholar

[48] A. De Vos, Endoreversible Thermodynamics of Solar Energy Conversion, Oxford, Oxford Science Publications. Oxford University Press on Demand, 1992.Search in Google Scholar

[49] M. Castañs, “Comments on “Maximum conversion efficiency for the utilization of direct solar radiation”,” Sol. Energy, vol. 30, no. 3, p. 293, 1983. https://doi.org/10.1016/0038-092X(83)90160-3.Search in Google Scholar

[50] N. D. Gudkov, “Comments on “A new look at the maximum conversion effieciency of black-body radiation”,” Sol. Energy, vol. 57, no. 4, pp. 335–337, 1996. https://doi.org/10.1016/S0038-092X(96)00105-3.Search in Google Scholar

[51] S. Kabelac, “Author’s reply…,” Sol. Energy, vol. 57, no. 4, pp. 337–338, 1996. https://doi.org/10.1016/S0038-092X(96)90055-9.Search in Google Scholar

[52] A. De Vos and H. Pauwels, “Comment on a controversy between M. Castañs and S. Jeter,” Sol. Energy, vol. 33, no. 1, pp. 91–92, 1984. https://doi.org/10.1016/0038-092x(84)90122-1.Search in Google Scholar

[53] A. De Vos and H. Pauwels, “Discussion: “The second law efficiency of solar energy conversion” (Gribik, J. A., and Osterle, J. F., 1984, ASME J. Sol. Energy Eng., 106, pp. 16–21),” J. Sol. Energy Eng., vol. 108, no. 1, pp. 80–83, 1986. https://doi.org/10.1115/1.3268070.Search in Google Scholar

[54] V. Bădescu, “Discussion: “Unification of three different theories concerning the ideal conversion of enclosed radiation” (Bejan, A., 1987, ASME J. Sol. Energy Eng., 109, pp. 46–51),” J. Sol. Energy Eng., vol. 110, no. 4, pp. 349–350, 1988. https://doi.org/10.1115/1.3268279.Search in Google Scholar

[55] S. E. Wright, M. Rosen, D. Scott, and J. Haddow, “The exergy flux of radiative heat transfer for the special case of blackbody radiation,” Exergy Int. J., vol. 2, no. 1, pp. 24–33, 2002. https://doi.org/10.1016/S1164-0235(01) 00040-1.10.1016/S1164-0235(01)00040-1Search in Google Scholar

[56] R. Petela, “Exergy of undiluted thermal radiation,” Sol. Energy, vol. 74, no. 6, pp. 469–488, 2003. https://doi.org/10.1016/s0038-092x(03)00226-3.Search in Google Scholar

[57] V. Bădescu, “Letter to the editor,” Sol. Energy, vol. 76, no. 4, pp. 509–511, 2004. https://doi.org/10.1016/j.solener. 2003.10.002.10.1016/j.solener.2003.10.002Search in Google Scholar

[58] V. Bădescu, “Comments on “A new look at the maximum conversion efficiency of black body radiation” by S. Kabelac Solar Energy 46(4), 231–236 (1991),” Sol. Energy, vol. 50, no. 4, p. 379, 1993. https://doi.org/10.1016/0038-092X(93)90031-I.Search in Google Scholar

[59] S. Kabelac, “Author’s reply…,” Sol. Energy, vol. 50, no. 4, pp. 379–380, 1993. https://doi.org/10.1016/0038-092X(93)90032-J.Search in Google Scholar

[60] C. Essex, R. McKitrick, and B. Andresen, “Does a global temperature exist?” J. Non-Equilib. Thermodyn., vol. 32, no. 1, pp. 1–27, 2007. https://doi.org/10.1515/JNET.2007.001.Search in Google Scholar

[61] P. T. Landsberg and V. Bădescu, “The geometrical factor of spherical radiation sources,” Europhys. Lett., vol. 50, no. 6, pp. 816–822, 2000. https://doi.org/10.1209/epl/i2000-00554-7.Search in Google Scholar

[62] V. Badescu, “Thermodynamics of photovoltaics,” in Reference Module in Earth Systems and Environmental Sciences, Amsterdam, Elsevier, 2017. Available at: https://www.sciencedirect.com/science/article/pii/B9780124095489048065.10.1016/B978-0-12-409548-9.04806-5Search in Google Scholar

[63] V. Bădescu, “Personal communication,” 2022.Search in Google Scholar

[64] M. Troudi, N. Sghaier, A. Kalboussi, and A. Souifi, “Analysis of photogenerated random telegraph signal in single electron detector (photo-SET),” Opt. Express, vol. 18, no. 1, pp. 1–9, 2010. https://doi.org/10.1364/OE.18.000001.Search in Google Scholar PubMed

[65] J. C. Miñano, P. Benítez, A. Cvetkovic, R. Mohedano, “SMS 3D design method,” in Illumination Engineering, New Jersey, John Wiley & Sons, 2013, Chap. 4, pp. 101–146. Available at: https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118462539.ch4.10.1002/9781118462539.ch4Search in Google Scholar

[66] A. Bejan, Heat Transfer: Evolution, Design and Performance, New Jersey, John Wiley & Sons, 2022.Search in Google Scholar

[67] G. F. Naterer, Advanced Heat Transfer, Florida, CRC Press, 2021.10.1201/9781003206125Search in Google Scholar

[68] A. E. Allahverdyan, D. Janzing, and G. Mahler, “Thermodynamic efficiency of information and heat flow,” J. Stat. Mech.: Theory Exp., vol. 2009, no. 09, p. P09011, 2009. https://doi.org/10.1088/1742–5468/2009/09/p09011.10.1088/1742-5468/2009/09/P09011Search in Google Scholar

[69] S. Sieniutycz, “Chapter 8-thermodynamics and optimization of practical processes,” in Thermodynamic Approaches in Engineering Systems, S. Sieniutycz, Ed., Amsterdam, Elsevier, 2016, pp. 347–420.10.1016/B978-0-12-805462-8.00008-XSearch in Google Scholar

Received: 2022-10-24
Accepted: 2023-01-02
Published Online: 2023-02-27
Published in Print: 2023-07-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 1.5.2024 from https://www.degruyter.com/document/doi/10.1515/jnet-2022-0080/html
Scroll to top button