Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 16, 2019

Attainability of Maximum Work and the Reversible Efficiency of Minimally Nonlinear Irreversible Heat Engines

  • M. Ponmurugan EMAIL logo

Abstract

We use the general formulation of irreversible thermodynamics and study the minimally nonlinear irreversible model of heat engines operating between a time-varying hot heat source of finite size and a cold heat reservoir of infinite size. We find the criterion under which the optimized efficiency obtained by this minimally nonlinear irreversible heat engine can reach the reversible efficiency under the tight coupling condition: a condition of no heat leakage between the system and the reservoirs. We assume the rate of heat transfer from the hot to the cold heat reservoir obeys Fourier’s law and discuss physical conditions under which one can obtain the reversible efficiency in a finite time with finite power. We also calculate the efficiency at maximum power for the minimally nonlinear irreversible heat engine under the nontight coupling condition.

Acknowledgment

I thank R. Arun for the critical reading of the manuscript. I also thank the anonymous referees for their critical comments and valuable suggestions.

Appendix I

We have k(T)=β(T)X2(T)Tca1(T) and p(T,T˙)=1+2a1(T)(g(T)+Cv(T)T˙). The partial differentiation of p with respect to T and T˙ is given by

(49)pT˙=2a1Cv,
(50)pT=2(a1g)T+2T˙(a1Cv)T.

By using eqs. (23)–(50) one can calculate

(51)J3T=T(k[1+p]+βg)
(52)+T˙T((β1)Cv),J3T˙=kpa1Cv+(β1)Cv,
(53)T˙(J3T˙)=kp3/2a12Cv2,
(54)T(J3T˙)=T(kpa1Cv)+T((β1)Cv).

For optimization eq. (28) can be rewritten in terms of T(t) as

(55)T¨T˙(J3T˙)+T˙T(J3T˙)J3T=0.

By using eqs. (51)–(54) in the above equation one can obtain

(56)T¨ka12Cv2p3/2+T˙T(kpa1Cv)T(k[1+p]+βg)=0.

Since

(57)ddt(kpa1Cv)=T¨ka12Cv2p3/2+T˙T(kpa1Cv)

and

(58)T˙(k[1+p]+βg)=kpa1Cv,

eq. (56) can be rewritten as

(59)ddt(YT˙)YT=0,

where Y(T,T˙)=k[1+p]+βg. We get an equation of the same type as eq. (59) for the other value of J1=J1 with Y(T,T˙)=k[1p]+βg. Therefore, for two different values of J1=J1±, one can get the same equation.

References

[1] N. Hashitsume, Prog. Theor. Phys. 7 (1952), no. 2, 225.10.1143/ptp/7.2.225Search in Google Scholar

[2] L. M. Martyushev, Entropy 15 (2013), 1152.10.3390/e15041152Search in Google Scholar

[3] I. Prigogine, Introduction to Thermodynamics of Irreversible Processes, Interscience, John Wiley and Sons, New York, 1961.Search in Google Scholar

[4] G. Lebon, D. Jou and J. C. Vazquez, Understanding Non-Equilibrium Thermodynamics, Springer-Verlag, Berlin, 2008.10.1007/978-3-540-74252-4Search in Google Scholar

[5] K. Brandner, K. Saito and U. Seifert, Phys. Rev. X 5 (2015), 031019.10.1103/PhysRevX.5.031019Search in Google Scholar

[6] J. Howard, Mechanics of Motor Proteins and the Cytoskeleton, Sinauer, New York, 2001.Search in Google Scholar

[7] J. Bath and A. J. Turberfield, Nat. Nanotechnol. 2 (2007), 275.10.1038/nnano.2007.104Search in Google Scholar PubMed

[8] U. Seifert, Phys. Rev. Lett. 106 (2011), 020601.10.1103/PhysRevLett.106.020601Search in Google Scholar PubMed

[9] C. Van den Broeck, Phys. Rev. Lett. 95 (2005), 190602.10.1103/PhysRevLett.95.190602Search in Google Scholar PubMed

[10] Y. Izumida and K. Okuda, Phys. Rev. E 80 (2009), 021121.10.1103/PhysRevE.80.021121Search in Google Scholar PubMed

[11] Z. C. Tu, J. Phys. A 41 (2008), 312003.10.1088/1751-8113/41/31/312003Search in Google Scholar

[12] M. Esposito, K. Lindenberg and C. Van den Broeck, Phys. Rev. Lett. 102 (2009), 130602.10.1103/PhysRevLett.102.130602Search in Google Scholar PubMed

[13] T. Schmiedl and U. Seifert, Europhys. Lett. 81 (2008), 20003.10.1209/0295-5075/81/20003Search in Google Scholar

[14] M. Esposito, R. Kawai, K. Lindenberg and C. Van den Broeck, Phys. Rev. Lett. 105 (2010), 150603.10.1103/PhysRevLett.105.150603Search in Google Scholar

[15] I. I. Novikov, J. Nucl. Energy 7 (1958), 125.10.1016/0891-3919(58)90244-4Search in Google Scholar

[16] F. L. Curzon and B. Ahlborn, Am. J. Phys. 43 (1975), 22.10.1119/1.10023Search in Google Scholar

[17] S. Sheng and Z. C. Tu, Phys. Rev. E 91 (2015), 022136.10.1103/PhysRevE.91.022136Search in Google Scholar PubMed

[18] J. P. Palao, L. A. Correa, G. Addesso and D. Alonso, Braz. J. Phys. 46 (2016), 282.10.1007/s13538-015-0396-xSearch in Google Scholar

[19] V. Holubec and A. Ryabov, Phys. Rev. E 92 (2015), 052125.10.1103/PhysRevE.92.052125Search in Google Scholar PubMed

[20] A. Ryabov and V. Holubec, Phys. Rev. E (R) 93 (2016), 050101.10.1103/PhysRevE.93.050101Search in Google Scholar PubMed

[21] Y. Izumida and K. Okuda, Phys. Rev. Lett. 112 (2014), 180603.10.1103/PhysRevLett.112.180603Search in Google Scholar PubMed

[22] H. Callen, Thermodynamics and an Introduction to Thermostatistics, Wiley, New York, 1985.Search in Google Scholar

[23] Y. Wang, Phys. Rev. E 93 (2016), 012120.10.1103/PhysRevA.93.032301Search in Google Scholar

[24] G. Benenti, K. Saito and G. Casati, Phys. Rev. Lett. 106 (2011), 230602; M. Bauer, D. Abreu and U. Seifert, J. Phys. A, Math. Theor.45 (2012), 162001; K. Brandner, K. Saito and U. Seifert, Phys. Rev. Lett.110 (2013), 070603; A. E. Allahverdyan, K. V. Hovhannisyan, A. V. Melkikh and S. G. Gevorkian, Phys. Rev. Lett.111 (2013), 050601; M. Polettini, G. Verley and M. Esposito, Phys. Rev. Lett.114 (2015), 050601; M. Campisi and R. Fazio, Nat. Commun.7 (2016), 11895; B. Leggio and M. Antezza, Phys. Rev. E93 (2016), 022122; J. Koning and J. O. Indekeu, Eur. Phys. J. B89 (2016), 248; S. Rana and A. M. Jayannavar, J. Stat. Mech. (2016), 103207, doi: 10.1088/1742-5468/2016/10/103207; J. S. Lee and H. Park, Sci. Rep.7 (2017), 10725; M. Polettini and M. Esposito, Europhys. Lett.118 (2017), 40003; N. Shiraishi, Phys. Rev. E95 (2017), 052128; V. Holubec and A. Ryabov, Phys. Rev. E96 (2017), 030102(R); V. Holubec and A. Ryabov, Phys. Rev. E96 (2017), 062107; P. Pietzonka and U. Seifert, Phys. Rev. Lett.120 (2018), 190602; C. V. Johnson, Phys. Rev. D98 (2018), 026008; V. Holubec and A. Ryabov, Phys. Rev. Lett.121 (2018), 120601; N. Shiraishi and K. Saito, J. Stat. Phys.174 (2019), 433, https://doi.org/10.1007/s10955-018-2180-0; J. Wang, J. He and Yong-li Ma, arXiv:cond-mat, (2018), 1803.03734; M. V. S. Bonanca, arXiv:cond-mat, (2018), 1809.09163.Search in Google Scholar

[25] A. Ryabov and V. Holubec, J. Stat. Mech. (2016), 073204, doi: 10.1088/1742-5468/2016/07/073204.Search in Google Scholar

[26] R. Long and W. Liu, Phys. Rev. E 94 (2016), 052114.10.1103/PhysRevE.94.052114Search in Google Scholar PubMed

[27] K. Proesmans and C. Van den Broeck, Phys. Rev. Lett. 115 (2015), 090601.10.1103/PhysRevLett.115.090601Search in Google Scholar PubMed

[28] K. Brandner and U. Seifert, Phys. Rev. E 91 (2015), 012121; K. Brandner and U. Seifert, Phys. Rev. E93 (2016), 062134; K. Yamamoto, O. Entin-Wohlman, A. Aharony and N. Hatano, Phys. Rev. B (R)94 (2016), 121402; N. Shiraishi and H. Tajima, Phys. Rev. E96 (2017), 022138.Search in Google Scholar

[29] Y. Izumida and K. Okuda, Europhys. Lett. 97 (2012), 10004.10.1209/0295-5075/97/10004Search in Google Scholar

[30] Y. Izumida, K. Okuda, A. C. Hernandez and J. M. M. Roco, Europhys. Lett. 101 (2013), 10005.10.1209/0295-5075/101/10005Search in Google Scholar

[31] Y. Izumida, K. Okuda, J. M. M. Roco and A. C. Hernandez, Phys. Rev. E 91 (2015), 052140.10.1103/PhysRevE.91.052140Search in Google Scholar PubMed

[32] R. Long, Z. Liu and W. Liu, Phys. Rev. E 89 (2014), 062119.10.1103/PhysRevE.89.062119Search in Google Scholar PubMed

[33] O. Kedem and S. R. Caplan, Trans. Faraday Soc. 61 (1965), 1897.10.1039/tf9656101897Search in Google Scholar

[34] L. Onsager, Phys. Rev. 37 (1931), 405.10.1103/PhysRev.37.405Search in Google Scholar

[35] Y. Apertet, H. Ouerdane, C. Goupil and Ph. Lecoeur, Phys. Rev. E 88 (2013), 022137.10.1103/PhysRevE.88.022137Search in Google Scholar PubMed

[36] Q. Liu, W. Li, M. Zhang, J. He and J. Wang, arXiv:cond-mat, (2018), 1802.06525.Search in Google Scholar

[37] U. M. Ascher, S. J. Ruuth and B. T. R. Wetton, SIAM J. Numer. Anal. 32 (1995), 797.10.1137/0732037Search in Google Scholar

[38] C. de Tomas, A. C. Hernandez and J. M. M. Roco, Phys. Rev. E (R) 85 (2012), 010104; Y. Wang, M. Li, Z. C. Tu, A. C. Hernandez and J. M. M. Roco, Phys. Rev. E86 (2012), 011127.Search in Google Scholar

[39] P. I. Hurtado and P. L. Garrido, Sci. Rep. 6 (2016), 38823; P. L. Garrido, P. I. Hurtado and N. Tizon-Escamilla, arXiv:cond-mat, (2018), 1810.10778.10.1038/srep38823Search in Google Scholar PubMed PubMed Central

[40] N. Shiraishi, K. Saito and H. Tasaki, Phys. Rev. Lett. 117 (2016), 190601.10.1103/PhysRevLett.117.190601Search in Google Scholar PubMed

[41] Priyanka, A. Kundu, A. Dhar and A. Kundu, Phys. Rev. E 98 (2018), 042105.10.1103/PhysRevE.98.042105Search in Google Scholar

Received: 2018-03-23
Revised: 2018-11-26
Accepted: 2018-12-12
Published Online: 2019-02-16
Published in Print: 2019-04-26

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 1.5.2024 from https://www.degruyter.com/document/doi/10.1515/jnet-2018-0009/html
Scroll to top button