Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 13, 2018

Nonparametric estimation of natural direct and indirect effects based on inverse probability weighting

  • Yu-Chin Hsu EMAIL logo , Martin Huber and Tsung-Chih Lai

Abstract

Using a sequential conditional independence assumption, this paper discusses fully nonparametric estimation of natural direct and indirect causal effects in causal mediation analysis based on inverse probability weighting. We propose estimators of the average indirect effect of a binary treatment, which operates through intermediate variables (or mediators) on the causal path between the treatment and the outcome, as well as the unmediated direct effect. In a first step, treatment propensity scores given the mediator and observed covariates or given covariates alone are estimated by nonparametric series logit estimation. In a second step, they are used to reweigh observations in order to estimate the effects of interest. We establish root-n consistency and asymptotic normality of this approach as well as a weighted version thereof. The latter allows evaluating effects on specific subgroups like the treated, for which we derive the asymptotic properties under estimated propensity scores. We also provide a simulation study and an application to an information intervention about male circumcisions.

JEL Classification: C21

A Appendix

A.1 Proof of Theorem 1

Define Ydd′ = Y(d, M(d′)) and μdd′ = E[Ydd′] for d, d′ ∈ {0, 1}. By Assumption 1 and Assumption 2,

μ 11 = E [ D Y p ( X ) ] , μ 00 = E [ ( 1 D ) Y 1 p ( X ) ] , μ 10 = E [ D Y p ( M , X ) 1 p ( M , X ) 1 p ( X ) ] , μ 01 = E [ ( 1 D ) Y 1 p ( M , X ) p ( M , X ) p ( X ) ] ,

see equations (4) and (5) of Huber (2014). This allows defining the direct and indirect effects of interest in terms of μdd′, e.g. θ(1) = μ11μ01. We estimate μdd′ for d, d′ ∈ {0, 1} by the normalized sample analogs

μ ^ 11 = 1 n i = 1 n D i Y i p ^ ( X i ) / 1 n i = 1 n D i p ^ ( X i ) , μ ^ 00 = 1 n i = 1 n ( 1 D i ) Y i 1 p ^ ( X i ) / 1 n i = 1 n ( 1 D i ) 1 p ^ ( X i ) , μ ^ 10 = 1 n i = 1 n D i Y i p ^ ( M i , X i ) 1 p ^ ( M i , X i ) 1 p ^ ( X i ) / 1 n i = 1 n D i p ^ ( M i , X i ) 1 p ^ ( M i , X i ) 1 p ^ ( X i ) , μ ^ 01 = 1 n i = 1 n ( 1 D i ) Y i 1 p ^ ( M i , X i ) p ^ ( M i , X i ) p ^ ( X i ) / 1 n i = 1 n ( 1 D i ) 1 p ^ ( M i , X i ) p ^ ( M i , X i ) p ^ ( X i ) .

To prove Theorem 1, it is thus sufficient to show that for d, d′ ∈ {0, 1},

n ( μ ^ d d μ d d ) = 1 n i = 1 n ψ d d ( Y i , M i , D i , X i ) + o p ( 1 ) .

As the results regarding μ11 and μ00 have been established by HIR, we subsequently focus on the proof for μ10 and note that the derivations for μ01 proceed in an analogous way. Let μ~10 be the numerator of μ^10 and ω~10 be the denominator of μ^10. We first show that

n ( μ ~ 10 μ 10 ) = 1 n i = 1 n ψ 10 ( Y i , M i , D i , X i ) + o p ( 1 ) ,

using a similar approach as HIR. Note that

n ( μ ~ 10 μ 10 ) = 1 n i = 1 n { D i Y i p ^ ( M i , X i ) 1 p ^ ( M i , X i ) 1 p ^ ( X i ) μ 10 } = 1 n i = 1 n { D i Y i p ( M i , X i ) 1 p ( M i , X i ) 1 p ( X i ) μ 10 } + 1 n i = 1 n { D i Y i p ( M i , X i ) 1 p ( M i , X i ) ( 1 p ( X i ) ) 2 ( p ^ ( X i ) p ( X i ) ) } + 1 n i = 1 n { D i Y i p 2 ( M i , X i ) 1 1 p ( X i ) ( p ^ ( M i , X i ) p ( M i , X i ) ) } + o p ( 1 )

where the second equality holds by a second order mean valued expansion around p(Xi) and p(Mi, Xi) and the fact that supxX|p^(x)p(x)|=op(n1/4) and supmM,xX|p^(m,x)p(m,x)|=op(n1/4). The converge rate of supxX|p^(x)p(x)|=Op(Kx(Kx/n+Kp¯x/2dx)) is derived in Lemma A3 of Hsu (2017) and the conditions given in this paper are sufficient for supxX|p^(x)p(x)|=op(n1/4). By the same argument as in Theorem 1 of HIR, we have

1 n i = 1 n { D i Y i p ( M i , X i ) 1 p ( M i , X i ) ( 1 p ( X i ) ) 2 ( p ^ ( X i ) p ( X i ) ) } = 1 n i = 1 n { E [ D i Y i p ( M i , X i ) 1 p ( M i , X i ) ( 1 p ( X i ) ) 2 | X i ] ( D i p ( X i ) ) } + o p ( 1 ) = 1 n i = 1 n { ρ 10 ( X i ) ( 1 p ( X i ) ) ( D i p ( X i ) ) } + o p ( 1 ) .

Similarly, it holds that

1 n i = 1 n { D i Y i p 2 ( M i , X i ) 1 1 p ( X i ) ( p ^ ( M i , X i ) p ( M i , X i ) ) } = 1 n i = 1 n { E [ D i Y i p 2 ( M i , X i ) 1 1 p ( X i ) | M i , X i ] ( D i p ( M i , X i ) ) } + o p ( 1 ) = 1 n i = 1 n { ζ 1 ( M i , X i ) p ( M i , X i ) 1 1 p ( X i ) ( D i p ( M i , X i ) ) } + o p ( 1 ) .

Next, one can easily show that

n ( w ~ 10 1 ) = o p ( 1 ) ,

by replacing Yi’s with 1’s in the proof for μ~10 and acknowledging that the influence functions for w~10 are all zero. Finally, it follows that

n ( μ ^ 10 μ 10 ) = n ( μ ~ 10 w ~ 10 μ 10 ) = n ( μ ~ 10 μ 10 ) μ 10 n ( w ~ 10 1 ) + o p ( 1 ) = n ( μ ~ 10 μ 10 ) + o p ( 1 ) ,

where the second equality follows by a mean-value expansion and the last equality holds by the fact that μ10 is bounded and that n(w~101)=op(1). This completes the proof.   □

A.2 Proof of Theorem 2

Define μdd′,g = E[g(X)Ydd′]/E[g(X)] for d, d′ ∈ {0, 1}. Similarly,

μ 11 , g = E [ g ( X ) D Y p ( X ) ] E [ g ( X ) ] , μ 00 , g = E [ g ( X ) ( 1 D ) Y 1 p ( X ) ] E [ g ( X ) ] , μ 10 , g = E [ g ( X ) D Y p ( M , X ) 1 p ( M , X ) 1 p ( X ) ] E [ g ( X ) ] , μ 01 , g = E [ g ( X ) ( 1 D ) Y 1 p ( M , X ) p ( M , X ) p ( X ) ] E [ g ( X ) ] .

We estimate μdd′,g for d, d′ ∈ {0, 1} by the normalized sample analogs

μ ^ 11 , g = 1 n i = 1 n g ( X i ) D i Y i p ^ ( X i ) / 1 n i = 1 n g ( X i ) D i p ^ ( X i ) , μ ^ 00 , g = 1 n i = 1 n g ( X i ) ( 1 D i ) Y i 1 p ^ ( X i ) / 1 n i = 1 n g ( X i ) ( 1 D i ) 1 p ^ ( X i ) , μ ^ 10 , g = 1 n i = 1 n g ( X i ) D i Y i p ^ ( M i , X i ) 1 p ^ ( M i , X i ) 1 p ^ ( X i ) / 1 n i = 1 n g ( X i ) D i p ^ ( M i , X i ) 1 p ^ ( M i , X i ) 1 p ^ ( X i ) , μ ^ 01 , g = 1 n i = 1 n g ( X i ) ( 1 D i ) Y i 1 p ^ ( M i , X i ) p ^ ( M i , X i ) p ^ ( X i ) / 1 n i = 1 n g ( X i ) ( 1 D i ) 1 p ^ ( M i , X i ) p ^ ( M i , X i ) p ^ ( X i ) .

Define Pg = E[g(X)]. We would like to show that n(μ^11,gμ11,g)=n1/2i=1nψμ11,g(Yi,Mi,Di,Xi)+op(1). First, we can be demonstrated that

n ( 1 n i = 1 n g ( X i ) D i Y i p ^ ( X i ) μ 11 , g P g ) = 1 n i = 1 n ( g ( X i ) D i Y i p ( X i ) g ( X i ) ρ 11 ( X i ) p ( X i ) ( D i p ( X i ) ) μ 11 , g P g ) + o p ( 1 ) , and n ( 1 n i = 1 n g ( X i ) D i p ^ ( X i ) μ 11 , g P g ) = 1 n i = 1 n ( g ( X i ) D i p ( X i ) g ( X i ) p ( X i ) ( D i p ( X i ) ) P g ) + o p ( 1 ) = 1 n i = 1 n ( g ( X i ) P g ) + o p ( 1 ) .

Then by delta method, we have

n ( μ ^ 11 , g μ 11 , g ) = 1 P g 1 n i = 1 n ( g ( X i ) D i Y i p ( X i ) g ( X i ) μ 1 ( X i ) p ( X i ) ( D i p ( X i ) ) μ 11 , g P g ) μ 11 , g P g ( g ( X i ) P g ) + o p ( 1 ) = 1 n i = 1 n g ( X i ) E [ g ( X ) ] ( D i Y i p ( X i ) ρ 11 ( X i ) p ( X i ) ( D i p ( X i ) ) μ 11 , g ) + o p ( 1 ) .

This gives the result for the μ11,g case. Using the same arguments, we can derive the results for μ00,g, μ01,g and μ10,g, too, which is sufficient to prove Theorem 2.   □

A.3 Proof of Theorem 3

Define μdd′,t = E[p(X)Ydd′]/E[p(X)] for d, d′ ∈ {0, 1}. Similarly,

μ 11 , t = E [ p ( X ) D Y p ( X ) ] E [ p ( X ) ] , μ 00 , t = E [ p ( X ) ( 1 D ) Y 1 p ( X ) ] E [ p ( X ) ] , μ 10 , t = E [ p ( X ) D Y p ( M , X ) 1 p ( M , X ) 1 p ( X ) ] E [ p ( X ) ] , μ 01 , t = E [ p ( X ) ( 1 D ) Y 1 p ( M , X ) p ( M , X ) p ( X ) ] E [ p ( X ) ] .

We estimate μdd′,t for d, d′ ∈ {0, 1} by the normalized sample analogs

μ ^ 11 , t = 1 n i = 1 n D i Y i / 1 n i = 1 n D i , μ ^ 00 , t = 1 n i = 1 n p ^ ( X i ) ( 1 D i ) Y i 1 p ^ ( X i ) / 1 n i = 1 n p ^ ( X i ) ( 1 D i ) 1 p ^ ( X i ) , μ ^ 10 , t = 1 n i = 1 n p ^ ( X i ) D i Y i p ^ ( M i , X i ) 1 p ^ ( M i , X i ) 1 p ^ ( X i ) / 1 n i = 1 n p ^ ( X i ) D i p ^ ( M i , X i ) 1 p ^ ( M i , X i ) 1 p ^ ( X i ) , μ ^ 01 , t = 1 n i = 1 n ( 1 D i ) Y i 1 p ^ ( M i , X i ) p ^ ( M i , X i ) / 1 n i = 1 n ( 1 D i ) 1 p ^ ( M i , X i ) p ^ ( M i , X i ) .

Define Pt = E[p(X)]. Note that we have

n ( 1 n i = 1 n D i Y i μ 11 , t P t ) = 1 n i = 1 n ( D i Y i μ 11 , t P t ) , n ( 1 n i = 1 n p ^ ( X i ) ( 1 D i ) Y i 1 p ^ ( X i ) μ 00 , t P t ) = 1 n i = 1 n ( p ( X i ) ( 1 D i ) Y i 1 p ( X i ) + μ 0 ( X i ) 1 p ( X i ) ( D i p ( X i ) ) μ 00 , t P t ) + o p ( 1 ) , n ( 1 n i = 1 n p ^ ( X i ) D i Y i p ^ ( M i , X i ) 1 p ^ ( M i , X i ) 1 p ^ ( X i ) μ 10 , t P t ) = 1 n i = 1 n ( p ( X i ) D i Y i p ( M i , X i ) 1 p ( M i , X i ) 1 p ( X i ) + ρ 10 ( X i ) 1 p ( X i ) ( D i p ( X i ) ) p ( X i ) ζ 1 ( M i , X i ) p ( M i , X i ) ( 1 p ( X i ) ) ( D i p ( M i , X i ) ) μ 10 , t P t ) + o p ( 1 ) , and n ( 1 n i = 1 n ( 1 D i ) Y i 1 p ^ ( M i , X i ) p ^ ( M i , X i ) μ 01 , t P t ) = 1 n i = 1 n ( ( 1 D i ) Y i 1 p ( M i , X i ) p ( M i , X i ) + ζ 0 ( M i , X i ) ( 1 p ( M i , X i ) ) ( D i p ( M i , X i ) ) μ 01 , t P t ) + o p ( 1 ) .

Furthermore,

n ( 1 n i = 1 n D i P t ) = 1 n i = 1 n ( D i P t ) + o p ( 1 ) , n ( 1 n i = 1 n p ^ ( X i ) ( 1 D i ) Y i 1 p ^ ( X i ) P t ) = 1 n i = 1 n ( D i P t ) + o p ( 1 ) n ( 1 n i = 1 n p ^ ( X i ) D i p ^ ( M i , X i ) 1 p ^ ( M i , X i ) 1 p ^ ( X i ) P t ) = 1 n i = 1 n ( D i P t ) + o p ( 1 ) , and n ( 1 n i = 1 n ( 1 D i ) 1 p ^ ( M i , X i ) p ^ ( M i , X i ) P t ) = 1 n i = 1 n ( D i P t ) + o p ( 1 ) .

By delta method, we have

n ( μ ^ 11 , t μ 11 , t ) = 1 n i = 1 n 1 P t ( D i Y i μ 11 , t P t μ 11 , t ( D i P t ) ) + o p ( 1 ) = 1 n i = 1 n 1 P t ( D i ( Y i μ 11 , t ) ) + o p ( 1 ) .

Similarly,

n ( μ ^ 00 , t μ 00 , t ) = 1 n i = 1 n 1 P t ( p ( X i ) ( 1 D i ) Y i 1 p ( X i ) + ρ 00 ( X i ) 1 p ( X i ) ( D i p ( X i ) ) μ 00 , t P t μ 00 , t ( D i P t ) ) + o p ( 1 ) = 1 n i = 1 n 1 P t ( p ( X i ) ( 1 D i ) ( Y i ρ 00 ( X i ) ) 1 p ( X i ) + ( ρ 00 ( X i ) μ 00 , t ) D i ) + o p ( 1 ) .

Next,

n ( μ ^ 10 , t μ 10 , t ) = 1 n i = 1 n 1 P t ( p ( X i ) D i Y i p ( M i , X i ) 1 p ( M i , X i ) 1 p ( X i ) + ρ 10 ( X i ) ( 1 p ( X i ) ) ( D i p ( X i ) ) p ( X i ) ζ 1 ( M i , X i ) p ( M i , X i ) ( 1 p ( X i ) ) ( D i p ( M i , X i ) ) μ 10 , t D i ) + o p ( 1 ) , n ( μ ^ 01 , t μ 01 , t ) = 1 n i = 1 n 1 P t ( ( 1 D i ) Y i 1 p ( M i , X i ) p ( M i , X i ) + ζ 0 ( M i , X i ) ( 1 p ( M i , X i ) ) ( D i p ( M i , X i ) ) μ 01 , t D i ) + o p ( 1 ) .

This completes the proof.   □

A.4 Effects of Circumcision on the Treated

Table 4:

Direct and indirect effects among treated.

θ(1)
θ(0)
δ(1)
δ(0)
est se pval est se pval est se pval est se pval
ipw cv 0.04 0.02 0.13 0.03 0.03 0.19 0.01 0.01 0.24 0.01 0.01 0.29
ipw ofit 0.03 0.03 0.34 0.01 0.03 0.74 0.02 0.01 0.04 0.00 0.01 0.78
semi ipw 0.04 0.02 0.13 0.03 0.03 0.19 0.01 0.01 0.24 0.01 0.01 0.28
  1. ‘est’, ‘se’, and ‘pval’ denote the effect estimate, the standard error, and the p-value, respectively. ‘ipw cv’, ‘ipw ofit’, and ‘semi ipw’ denote IPW using SLE based on cross-validation, IPW using SLE based on overfitting, and semiparametric IPW using probit, respectively. Standard errors and/or p-values are based on 1999 bootstrap replications.

References

Abrevaya, J., Y.-C. Hsu, and R. P. Lieli. 2015. “Estimating Conditional Average Treatment Effects.” Journal of Business & Economic Statistics 33 (4): 485–505.10.1080/07350015.2014.975555Search in Google Scholar

Albert, J. M. 2008. “Mediation analysis via potential outcomes models.” Statistics in Medicine 27: 1282–1304.10.1002/sim.3016Search in Google Scholar PubMed

Albert, J. M., and S. Nelson. 2011. “Generalized causal mediation analysis.” Biometrics 67: 1028–1038.10.1111/j.1541-0420.2010.01547.xSearch in Google Scholar PubMed PubMed Central

An, W., and X. Wang. 2016. “Instrumental Variable Estimation of Causal Effects through Local Average Response Functions.” Journal of Statistical Software 71: 1–13.10.18637/jss.v071.c01Search in Google Scholar

Baron, R. M., and D. A. Kenny. 1986. “The Moderator-Mediator Variable Distinction in Social Psychological Research: Conceptual, Strategic, and Statistical Considerations.” Journal of Personality and Social Psychology 51: 1173–1182.10.1037/0022-3514.51.6.1173Search in Google Scholar

Busso, M., J. DiNardo, and J .McCrary. 2014. “New Evidence on the Finite Sample Properties of Propensity Score Matching and Reweighting Estimators.” Review of Economics and Statistics 96 (5): 885–897.10.1162/REST_a_00431Search in Google Scholar

Chinkhumba, J., S. Godlonton, and R. Thornton. 2014. “The Demand for Medical Male Circumcision.” American Economic Journal: Applied Economics 6: 152–177.10.1257/app.6.2.152Search in Google Scholar

Donald, S. G., and Y.-C. Hsu. 2014. “Estimation and Inference for Distribution Functions and Quantile Functions in Treatment Effect Models.” Journal of Econometrics 178: 383–397.10.1016/j.jeconom.2013.03.010Search in Google Scholar

Donald, S. G., Y.-C. Hsu, and R. P. Lieli. 2014. “Testing the Unconfoundedness Assumption via Inverse Probability Weighted Estimators of (L)ATT.” Journal of Business & Economic Statistics 32 (3): 395–415.10.1080/07350015.2014.888290Search in Google Scholar

Donald, S. G., Y.-C. Hsu, and R. P. Lieli. 2014. “Inverse Probability Weighted Estimation of Local Average Treatment Effects: A Higher Order MSE Expansion.” Statistics and Probability Letters 95:132–138.10.1016/j.spl.2014.08.015Search in Google Scholar

Flores, C. A., and A. Flores-Lagunes. 2009. “Identification and Estimation of Causal Mechanisms and Net Effects of a Treatment under Unconfoundedness.” IZA Dicussion Paper No. 4237.10.2139/ssrn.1423353Search in Google Scholar

Gelman, A., and G. Imbens. 2013. “Why ask Why? Forward Causal Inference and Reverse Causal Questions.” NBER Working Paper No. 19614.10.3386/w19614Search in Google Scholar

Hayes, A. F. 2017. An introduction to mediation, moderation, and conditional process analysis: A regression-based approach. New york, USA: Guilford Press.Search in Google Scholar

Hirano, K., G. W. Imbens, and G. Ridder. 2003. “Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score.” Econometrica 71: 1161–1189.10.3386/t0251Search in Google Scholar

Hong, G. 2010. “Ratio of mediator probability weighting for estimating natural direct and indirect effects,” in JSM Proceedings, Biometrics Section, pp. 2401–2415. Alexandria, VA: American Statistical Association.Search in Google Scholar

Hong, G. 2015. Causality in a social world: Moderation, mediation and spill-over. West Sussex, UK: John Wiley & Sons, Ltd.10.1002/9781119030638Search in Google Scholar

Hsu, Y.-C. 2017. “Consistent Tests for Conditional Treatment Effects.” Econometrics Journal 20 (1):1–22.10.1111/ectj.12077Search in Google Scholar

Huber, M. 2014. “Identifying causal mechanisms (primarily) based on inverse probability weighting.” Journal of Applied Econometrics 29: 920–943.10.1002/jae.2341Search in Google Scholar

Ichimura, H., and O. Linton. 2005. “Asymptotic Expansions for Some Semiparametric Program Evaluation Estimators,” in Identification and Inference for Econometric Models: essays in honor of Thomas Rothenberg, edited by D. Andrews and J. Stock. Cambridge, England: Cambridge University Press.10.1017/CBO9780511614491.009Search in Google Scholar

Imai, K., L. Keele, and T. Yamamoto. 2010. “Identification, Inference and Sensitivity Analysis for Causal Mediation Effects.” Statistical Science 25: 51–71.10.1214/10-STS321Search in Google Scholar

Imai, K., and T. Yamamoto. 2013. “Identification and Sensitivity Analysis for Multiple Causal Mechanisms: Revisiting Evidence from Framing Experiments.” Political Analysis 21: 141–171.10.1093/pan/mps040Search in Google Scholar

Imbens, G. W. 2004. “Nonparametric Estimation of Average Treatment Effects under Exogeneity: A Review.” The Review of Economics and Statistics 86: 4–29.10.3386/t0294Search in Google Scholar

Imbens, G. W., and J. M. Wooldridge. 2009. “Recent Developments in the Econometrics of Program Evaluation.” Journal of Economic Literature 47: 5–86.10.3386/w14251Search in Google Scholar

Judd, C. M., and D. A. Kenny. 1981. “Process Analysis: Estimating Mediation in Treatment Evaluations.” Evaluation Review 5: 602–619.10.1177/0193841X8100500502Search in Google Scholar

Li, Q., and J. S. Racine. 2007. Nanparametric econometrics: theory and practice. Princeton, New Jersey: Princeton Universiry Press.Search in Google Scholar

MacKinnon, D. P. 2008. Introduction to Statistical Mediation Analysis. New York: Taylor and Francis.Search in Google Scholar

Pearl, J. 2001. “Direct and indirect effects,” in Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence, pp. 411–420, San Francisco. Morgan Kaufman.Search in Google Scholar

Petersen, M. L., S. E. Sinisi, and M. J. van der Laan. 2006. “Estimation of Direct Causal Effects.” Epidemiology 17: 276–284.10.1097/01.ede.0000208475.99429.2dSearch in Google Scholar PubMed

Robins, J. M. 2003. “Semantics of causal DAG models and the identification of direct and indirect effects,” in In Highly Structured Stochastic Systems, edited by P. Green, N. Hjort, and S. Richardson, pp. 70–81, Oxford: Oxford University Press.Search in Google Scholar

Robins, J. M., and S. Greenland. 1992. “Identifiability and Exchangeability for Direct and Indirect Effects.” Epidemiology 3: 143–155.10.1097/00001648-199203000-00013Search in Google Scholar PubMed

Rubin, D. B. 1974. “Estimating Causal Effects of Treatments in Randomized and Nonrandomized Studies.” Journal of Educational Psychology 66: 688–701.10.1037/h0037350Search in Google Scholar

Rubin, D. B. 2004. “Direct and Indirect Causal Effects via Potential Outcomes.” Scandinavian Journal of Statistics 31: 161–170.10.1111/j.1467-9469.2004.02-123.xSearch in Google Scholar

Tchetgen Tchetgen, E. J. 2013. “Inverse Odds Ratio-Weighted Estimation for Causal Mediation Analysis.” Statistics in Medicine 32: 4567–4580.10.1002/sim.5864Search in Google Scholar PubMed PubMed Central

Tchetgen Tchetgen, E. J., and I. Shpitser. 2012. “Semiparametric theory for causal mediation analysis: Efficiency bounds, multiple robustness, and sensitivity analysis.” The Annals of Statistics 40: 1816–1845.10.1214/12-AOS990Search in Google Scholar PubMed PubMed Central

Ten Have, T. R., M. M. Joffe, K. G. Lynch, G. K. Brown, S. A. Maisto, and A. T. Beck. 2007. “Causal mediation analyses with rank preserving models.” Biometrics 63: 926–934.10.1111/j.1541-0420.2007.00766.xSearch in Google Scholar PubMed

Tingley, D., T. Yamamoto, K. Hirose, K. Imai, and L. Keele. 2014. “Mediation: R package for causal mediation analysis.” Journal of Statistical Software 59: 1–38.10.18637/jss.v059.i05Search in Google Scholar

VanderWeele, T. J. 2009. “Marginal Structural Models for the Estimation of Direct and Indirect Effects.” Epidemiology 20: 18–26.10.1097/EDE.0b013e31818f69ceSearch in Google Scholar PubMed

Vansteelandt, S., M. Bekaert, and T. Lange. 2012. “Imputation Strategies for the Estimation of Natural Direct and Indirect Effects.” Epidemiologic Methods 1: 129–158.10.1515/2161-962X.1014Search in Google Scholar

Published Online: 2018-06-13

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.1515/jem-2017-0016/html
Scroll to top button