Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 26, 2023

Smoothing Levenberg–Marquardt algorithm for solving non-Lipschitz absolute value equations

  • Nurullah Yilmaz ORCID logo EMAIL logo and Aysegul Kayacan ORCID logo

Abstract

In this study, we concentrate on solving the problem of non-Lipschitz absolute value equations (NAVE). A new Bezier curve based smoothing technique is introduced and a new Levenberg–Marquardt type algorithm is developed depending on the smoothing technique. The numerical performance of the algorithm is analysed by considering some well-known and randomly generated test problems. Finally, the comparison with other methods is illustrated to demonstrate the efficiency of the proposed algorithm.

MSC 2010: 65K10; 26D07; 90C33

References

[1] L. Abdallah, M. Haddou and T. Migot, Solving absolute value equation using complementarity and smoothing functions, J. Comput. Appl. Math. 327 (2018), 196–207. 10.1016/j.cam.2017.06.019Search in Google Scholar

[2] J. H. Alcantara, J.-S. Chen and M. K. Tam, Method of alternating projections for the general absolute value equation, J. Fixed Point Theory Appl. 25 (2023), no. 1, Paper No. 39. 10.1007/s11784-022-01026-8Search in Google Scholar

[3] R. Ali, K. Pan and A. Ali, Two new iteration methods with optimal parameters for solving absolute value equations, Int. J. Appl. Comput. Math. 8 (2022), no. 3, Paper No. 123. 10.1007/s40819-022-01324-2Search in Google Scholar

[4] A. M. Bagirov, B. Ordin, G. Ozturk and A. E. Xavier, An incremental clustering algorithm based on hyperbolic smoothing, Comput. Optim. Appl. 61 (2015), no. 1, 219–241. 10.1007/s10589-014-9711-7Search in Google Scholar

[5] A. Ben-Tal and M. Teboulle, A smoothing technique for nondifferentiable optimization problems, Optimization (Varetz 1988), Lecture Notes in Math. 1405, Springer, Berlin (1989), 1–11. 10.1007/BFb0083582Search in Google Scholar

[6] D. P. Bertsekas, Nondifferentiable optimization via approximation, Math. Program. Stud. 3 (1975), 1–25. 10.1007/BFb0120696Search in Google Scholar

[7] L. Caccetta, B. Qu and G. Zhou, A globally and quadratically convergent method for absolute value equations, Comput. Optim. Appl. 48 (2011), no. 1, 45–58. 10.1007/s10589-009-9242-9Search in Google Scholar

[8] C. Chen and O. L. Mangasarian, A class of smoothing functions for nonlinear and mixed complementarity problems, Comput. Optim. Appl. 5 (1996), no. 2, 97–138. 10.1007/BF00249052Search in Google Scholar

[9] C. Chen, Y. Yang, D. Yu and D. Han, An inverse-free dynamical system for solving the absolute value equations, Appl. Numer. Math. 168 (2021), 170–181. 10.1016/j.apnum.2021.06.002Search in Google Scholar

[10] X. Chen, Smoothing methods for nonsmooth, nonconvex minimization, Math. Program. 134 (2012), no. 1, 71–99. 10.1007/s10107-012-0569-0Search in Google Scholar

[11] S. Du, L. Zhang, C. Chen and L. Qi, Tensor absolute value equations, Sci. China Math. 61 (2018), no. 9, 1695–1710. 10.1007/s11425-017-9238-6Search in Google Scholar

[12] G. E. Farin, Curves and Surfaces for CADG: A Partical Guide, Morgan Kaufmann, San Fransico, 2002. Search in Google Scholar

[13] A. Goli, E. B. Tirkolaee and G. W. Weber, An integration of neural network and shuffled frog-leaping algorithm for CNC machining monitoring, Found. Comput. Decis. Sci. 46 (2021), 27–42. 10.2478/fcds-2021-0003Search in Google Scholar

[14] M. Graczyk-Kucharska, M. Szafranski, S. Gutmen, M. Golinski, M. Spychla, G. W. Weber, Z. Wlodarczak, S. Kuter and A. Ozmen, Modeling for human resources management by data mining, analytics and artificial intelligence in the logistics departments, Smart and Sustainable Supply Chain and Logistics - Trends, Challenges, Methods and Best Practices, Springer, Cham (2020), 291–303. 10.1007/978-3-030-61947-3_20Search in Google Scholar

[15] C. Grossmann, Smoothing techniques for exact penalty methods, A Panorama of Mathematics: Pure and Applied, Contemp. Math. 658, American Mathematical Society, Providence (2016), 249–265. 10.1090/conm/658/13128Search in Google Scholar

[16] F. Hashemi and S. Ketabchi, Numerical comparisons of smoothing functions for optimal correction of an infeasible system of absolute value equations, Numer. Algebra Control Optim. 10 (2020), no. 1, 13–21. 10.3934/naco.2019029Search in Google Scholar

[17] S.-L. Hu and Z.-H. Huang, A note on absolute value equations, Optim. Lett. 4 (2010), no. 3, 417–424. 10.1007/s11590-009-0169-ySearch in Google Scholar

[18] J. Iqbal, A. Iqbal and M. Arif, Levenberg–Marquardt method for solving systems of absolute value equations, J. Comput. Appl. Math. 282 (2015), 134–138. 10.1016/j.cam.2014.11.062Search in Google Scholar

[19] X. Jiang and Y. Zhang, A smoothing-type algorithm for absolute value equations, J. Ind. Manag. Optim. 9 (2013), no. 4, 789–798. 10.3934/jimo.2013.9.789Search in Google Scholar

[20] Y. Ke, The new iteration algorithm for absolute value equation, Appl. Math. Lett. 99 (2020), Article ID 105990. 10.1016/j.aml.2019.07.021Search in Google Scholar

[21] Y.-F. Ke and C.-F. Ma, SOR-like iteration method for solving absolute value equations, Appl. Math. Comput. 311 (2017), 195–202. 10.1016/j.amc.2017.05.035Search in Google Scholar

[22] S. Ketabchi and H. Moosaei, Minimum norm solution to the absolute value equation in the convex case, J. Optim. Theory Appl. 154 (2012), no. 3, 1080–1087. 10.1007/s10957-012-0044-3Search in Google Scholar

[23] E. Kürüm, K. Yildirak and G.-W. Weber, A classification problem of credit risk rating investigated and solved by optimisation of the ROC curve, CEJOR Cent. Eur. J. Oper. Res. 20 (2012), no. 3, 529–557. 10.1007/s10100-011-0224-5Search in Google Scholar

[24] S. Kuter, Z. Akyurek and G. W. Weber, Retrieval of fractional snow covered area from MODIS data by multivariate adaptive regression splines, Remote Sens. Environ. 205 (2018), 236–252. 10.1016/j.rse.2017.11.021Search in Google Scholar

[25] C.-X. Li and S.-L. Wu, A shift splitting iteration method for generalized absolute value equations, Comput. Methods Appl. Math. 21 (2021), no. 4, 863–872. 10.1515/cmam-2020-0004Search in Google Scholar

[26] O. L. Mangasarian, Absolute value programming, Comput. Optim. Appl. 36 (2007), no. 1, 43–53. 10.1007/s10589-006-0395-5Search in Google Scholar

[27] O. L. Mangasarian, A generalized Newton method for absolute value equations, Optim. Lett. 3 (2009), no. 1, 101–108. 10.1007/s11590-008-0094-5Search in Google Scholar

[28] O. L. Mangasarian, A hybrid algorithm for solving the absolute value equation, Optim. Lett. 9 (2015), no. 7, 1469–1474. 10.1007/s11590-015-0893-4Search in Google Scholar

[29] O. L. Mangasarian and R. R. Meyer, Absolute value equations, Linear Algebra Appl. 419 (2006), no. 2–3, 359–367. 10.1016/j.laa.2006.05.004Search in Google Scholar

[30] A. Mansoori and M. Erfanian, A dynamic model to solve the absolute value equations, J. Comput. Appl. Math. 333 (2018), 28–35. 10.1016/j.cam.2017.09.032Search in Google Scholar

[31] X.-H. Miao, J. Yang and S. Hu, A generalized Newton method for absolute value equations associated with circular cones, Appl. Math. Comput. 269 (2015), 155–168. 10.1016/j.amc.2015.07.064Search in Google Scholar

[32] X.-H. Miao, K. Yao, C.-Y. Yang and J.-S. Chen, Levenberg–Marquardt method for absolute value equation associated with second-order cone, Numer. Algebra Control Optim. 12 (2022), no. 1, 47–61. 10.3934/naco.2021050Search in Google Scholar

[33] C. T. Nguyen, B. Saheya, Y.-L. Chang and J.-S. Chen, Unified smoothing functions for absolute value equation associated with second-order cone, Appl. Numer. Math. 135 (2019), 206–227. 10.1016/j.apnum.2018.08.019Search in Google Scholar

[34] O. Prokopyev, On equivalent reformulations for absolute value equations, Comput. Optim. Appl. 44 (2009), no. 3, 363–372. 10.1007/s10589-007-9158-1Search in Google Scholar

[35] H.-D. Qi and L.-Z. Liao, A smoothing Newton method for general nonlinear complementarity problems, Comput. Optim. Appl. 17 (2000), no. 2, 231–253. Search in Google Scholar

[36] J. Rohn, A theorem of the alternatives for the equation A x + B | x | = b , Linear Multilinear Algebra 52 (2004), no. 6, 421–426. 10.1080/0308108042000220686Search in Google Scholar

[37] B. Saheya, C. T. Nguyen and J.-S. Chen, Neural network based on systematically generated smoothing functions for absolute value equation, J. Appl. Math. Comput. 61 (2019), no. 1–2, 533–558. 10.1007/s12190-019-01262-1Search in Google Scholar

[38] B. Saheya, C.-H. Yu and J.-S. Chen, Numerical comparisons based on four smoothing functions for absolute value equation, J. Appl. Math. Comput. 56 (2018), no. 1–2, 131–149. 10.1007/s12190-016-1065-0Search in Google Scholar

[39] A. Sahiner, N. Yilmaz and S. A. Ibrahem, Smoothing approximations to non-smooth functions, J. Multidisciplinary Model. Optim. 1 (2018), no. 2, 69–74. Search in Google Scholar

[40] A. Sahiner, N. Yilmaz, G. Kapusuz and G. Ozkardas, Bezier curve based smoothing penalty function for constrained optimization, J. Multidiscip. Model. Optim. 3 (2021), 70–79. Search in Google Scholar

[41] N. N. Shams and F. P. A. Beik, An improvement on a class of fixed point iterative methods for solving absolute value equations, Comput. Methods Appl. Math. 22 (2022), no. 3, 663–673. 10.1515/cmam-2022-0020Search in Google Scholar

[42] J. Tang and J. Zhou, A quadratically convergent descent method for the absolute value equation A x + B | x | = b , Oper. Res. Lett. 47 (2019), no. 4, 229–234. 10.1016/j.orl.2019.03.014Search in Google Scholar

[43] A. Wang, Y. Cao and J.-X. Chen, Modified Newton-type iteration methods for generalized absolute value equations, J. Optim. Theory Appl. 181 (2019), no. 1, 216–230. 10.1007/s10957-018-1439-6Search in Google Scholar

[44] F. Wang, Z. Yu and C. Gao, A smoothing neural network algorithm for absolute value equations, Engineering 7 (2015), 567–576. 10.4236/eng.2015.79052Search in Google Scholar

[45] C. Wu, J. Zhan, Y. Lu and J.-S. Chen, Signal reconstruction by conjugate gradient algorithm based on smoothing l 1 -norm, Calcolo 56 (2019), no. 4, Paper No. 42. 10.1007/s10092-019-0340-5Search in Google Scholar

[46] A. E. Xavier, The hyperbolic smoothing clustering method, Patt. Recog. 43 (2010), 731–737. 10.1016/j.patcog.2009.06.018Search in Google Scholar

[47] N. Yilmaz and A. Sahiner, New smoothing approximations to piecewise smooth functions and applications, Numer. Funct. Anal. Optim. 40 (2019), no. 5, 513–534. 10.1080/01630563.2018.1561466Search in Google Scholar

[48] N. Yilmaz and A. Sahiner, On a new smoothing technique for non-smooth, non-convex optimization, Numer. Algebra Control Optim. 10 (2020), no. 3, 317–330. 10.3934/naco.2020004Search in Google Scholar

[49] N. Yilmaz and A. Sahiner, Smoothing techniques in solving non-Lipschitz absolute value equations, Int. J. Comput. Math. (2023), 10.1080/00207160.2022.2163388. 10.1080/00207160.2022.2163388Search in Google Scholar

[50] D. Yu, C. Chen and D. Han, A modified fixed point iteration method for solving the system of absolute value equations, Optimization 71 (2022), no. 3, 449–461. 10.1080/02331934.2020.1804568Search in Google Scholar

[51] I. Zang, A smoothing-out technique for min-max optimization, Math. Programming 19 (1980), no. 1, 61–77. 10.1007/BF01581628Search in Google Scholar

Received: 2022-11-14
Revised: 2023-01-05
Accepted: 2023-01-06
Published Online: 2023-01-26
Published in Print: 2023-12-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/jaa-2022-1025/html
Scroll to top button