Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 8, 2022

Maximum number of limit cycles for generalized Kukles differential system

  • Houdeifa Melki and Amar Makhlouf EMAIL logo

Abstract

We apply the averaging theory of first and second order to a class of generalized polynomial Kukles differential systems, which can bifurcate from the periodic orbits of the linear center x ˙ = y , y ˙ = - x , in order to study the maximum number of limit cycles of these systems.

MSC 2010: 34C29; 34C25; 47H11

A Appendix

We have

0 2 π cos i θ sin j + 1 θ cos ( ( 2 h ) θ ) 𝑑 θ = { π A i j 2 h if  i  even,  j  odd , h = 0 , 1 , , n 1 , π A ~ i j 2 h if  i  even,  j  odd , h = 0 , 1 , , n 2 , π A ^ i j 2 h if  i  even,  j  odd , h = 0 , 1 , , n 3 , π A ¯ i j 2 h if  i  even,  j  odd , h = 0 , 1 , , n 4 , 0 otherwise ,
0 2 π cos i θ sin j + 1 θ sin ( ( 2 h + 1 ) θ ) 𝑑 θ = { π B i j 2 h + 1 if  i  even,  j  even , h = 0 , 1 , , n 1 , π B ~ i j 2 h + 1 if  i  even,  j  even , h = 0 , 1 , , n 2 , π B ^ i j 2 h + 1 if  i  even,  j  even , h = 0 , 1 , , n 3 , π B ¯ i j 2 h + 1 if  i  even,  j  even , h = 0 , 1 , , n 4 , 0 otherwise ,
0 2 π cos i θ sin j + 1 θ cos ( ( 2 h + 1 ) θ ) 𝑑 θ = { π C i j 2 h + 1 if  i  odd,  j  odd , h = 0 , 1 , , n 1 , π C ~ i j 2 h + 1 if  i  odd,  j  odd , h = 0 , 1 , , n 2 , π C ^ i j 2 h + 1 if  i  odd,  j  odd , h = 0 , 1 , , n 3 , π C ¯ i j 2 h + 1 if  i  odd,  j  odd , h = 0 , 1 , , n 4 , 0 otherwise ,
0 2 π cos i θ sin j + 2 θ sin ( ( 2 h + 1 ) θ ) 𝑑 θ = { π D i j 2 h + 1 if  i  even,  j  odd , h = 0 , 1 , , n 1 , π D ~ i j 2 h + 1 if  i  even,  j  odd , h = 0 , 1 , , n 2 , π D ^ i j 2 h + 1 if  i  even,  j  odd , h = 0 , 1 , , n 3 , π D ¯ i j 2 h + 1 if  i  even,  j  odd , h = 0 , 1 , , n 4 , 0 otherwise ,
0 2 π cos i θ sin j + 2 θ sin ( ( 2 h ) θ ) 𝑑 θ = { π E i j 2 h if  i  even,  j  even , h = 0 , 1 , , n 1 , π E ~ i j 2 h if  i  even,  j  even , h = 0 , 1 , , n 2 , π E ^ i j 2 h if  i  even,  j  even , h = 0 , 1 , , n 3 , π E ¯ i j 2 h if  i  even,  j  even , h = 0 , 1 , , n 4 , 0 otherwise ,
0 2 π cos i θ sin j + 2 θ cos ( ( 2 h + 1 ) θ ) 𝑑 θ = { π F i j 2 h + 1 if  i  odd,  j  even , h = 0 , 1 , , n 1 , π F ~ i j 2 h + 1 if  i  odd,  j  even , h = 0 , 1 , , n 2 , π F ^ i j 2 h + 1 if  i  odd,  j  even , h = 0 , 1 , , n 3 , π F ¯ i j 2 h + 1 if  i  odd,  j  even , h = 0 , 1 , , n 4 , 0 otherwise ,
0 2 π cos i θ sin j + 3 θ sin ( ( 2 h + 1 ) θ ) 𝑑 θ = { π G i j 2 h + 1 if  i  even,  j  even , h = 0 , 1 , , n 1 , π G ~ i j 2 h + 1 if  i  even,  j  even , h = 0 , 1 , , n 2 , π G ^ i j 2 h + 1 if  i  even,  j  even , h = 0 , 1 , , n 3 , π G ¯ i j 2 h + 1 if  i  even,  j  even , h = 0 , 1 , , n 4 , 0 otherwise ,
0 2 π cos i θ sin j + 3 θ cos ( ( 2 h ) θ ) 𝑑 θ = { π H i j 2 h if  i  even,  j  odd , h = 0 , 1 , , n 1 , π H ~ i j 2 h if  i  even,  j  odd , h = 0 , 1 , , n 2 , π H ^ i j 2 h if  i  even,  j  odd , h = 0 , 1 , , n 3 , π H ¯ i j 2 h if  i  even,  j  odd , h = 0 , 1 , , n 4 , 0 otherwise ,
0 2 π cos i θ sin j + 3 θ cos ( ( 2 h + 1 ) θ ) 𝑑 θ = { π I i j 2 h + 1 if  i  odd,  j  odd , h = 0 , 1 , , n 1 , π I ~ i j 2 h + 1 if  i  odd,  j  odd , h = 0 , 1 , , n 2 , π I ^ i j 2 h + 1 if  i  odd,  j  odd , h = 0 , 1 , , n 3 , π I ¯ i j 2 h + 1 if  i  odd,  j  odd , h = 0 , 1 , , n 4 , 0 otherwise ,
0 2 π cos i θ sin j + 4 θ sin ( ( 2 h + 1 ) θ ) 𝑑 θ = { π J i j 2 h + 1 if  i  even,  j  odd , h = 0 , 1 , , n 1 , π J ~ i j 2 h + 1 if  i  even,  j  odd , h = 0 , 1 , , n 2 , π J ^ i j 2 h + 1 if  i  even,  j  odd , h = 0 , 1 , , n 3 , π J ¯ i j 2 h + 1 if  i  even,  j  odd , h = 0 , 1 , , n 4 , 0 otherwise ,
0 2 π cos i θ sin j + 4 θ cos ( ( 2 h + 1 ) θ ) 𝑑 θ = { π L i j 2 h + 1 if  i  odd,  j  even , h = 0 , 1 , , n 1 , π L ~ i j 2 h + 1 if  i  odd,  j  even , h = 0 , 1 , , n 2 , π L ^ i j 2 h + 1 if  i  odd,  j  even , h = 0 , 1 , , n 3 , π L ¯ i j 2 h + 1 if  i  odd,  j  even , h = 0 , 1 , , n 4 , 0 otherwise ,
0 2 π cos i + h + 1 θ sin j + k + 1 θ d θ = { π M i j h k if  i  even,  j  even , h  odd,  k  odd , or  i  odd,  j  odd , h  even,  k  even , or  i  even,  j  odd , h  odd,  k  even , or  i  odd,  j  even , h  even,  k  odd , 0 otherwise ,
0 2 π cos i + h + 1 θ sin j + k + 2 θ d θ = { π N i j h k if  i  odd,  j  even , h  even,  k  even , or  i  even,  j  even , h  odd,  k  even , or  i  odd,  j  odd , h  even,  k  odd , or  i  even,  j  odd , h  odd,  k  odd , 0 otherwise ,
0 2 π cos i + h + 1 θ sin j + k + 3 θ d θ = { π P i j h k if  i  even,  j  even , h  odd,  k  odd , or  i  odd,  j  odd , h  even,  k  even , or  i  even,  j  odd , h  odd,  k  even , or  i  odd,  j  even , h  even,  k  odd , 0 otherwise ,
0 2 π cos i + h + 1 θ sin j + k + 4 θ d θ = { π Q i j h k if  i  odd,  j  even , h  even,  k  even , or  i  even,  j  even , h  odd,  k  even , or  i  odd,  j  odd , h  even,  k  odd , or  i  even,  j  odd , h  odd,  k  odd , 0 otherwise ,
0 2 π cos i + h + 1 θ sin j + k + 5 θ d θ = { π R i j h k if  i  even,  j  even , h  odd,  k  odd , or  i  odd,  j  odd , h  even,  k  even , or  i  even,  j  odd , h  odd,  k  even , or  i  odd,  j  even , h  even,  k  odd , 0 otherwise ,
0 2 π cos i + h + 1 θ sin j + k + 6 θ d θ = { π S i j h k if  i  odd,  j  even , h  even,  k  even , or  i  even,  j  even , h  odd,  k  even , or  i  odd,  j  odd , h  even,  k  odd , or  i  even,  j  odd , h  odd,  k  odd , 0 otherwise ,
0 2 π cos i + h + 1 θ sin j + k + 7 θ d θ = { π T i j h k if  i  even,  j  even , h  odd,  k  odd , or  i  odd,  j  odd , h  even,  k  even , or  i  even,  j  odd , h  odd,  k  even , or  i  odd,  j  even , h  even,  k  odd , 0 otherwise ,

where

α i j , β i j , δ i j , γ i j ,
A i j 2 h , A ~ i j 2 h , A ^ i j 2 h , A ¯ i j 2 h ,
B i j 2 h + 1 , B ~ i j 2 h + 1 , B ^ i j 2 h + 1 , B ¯ i j 2 h + 1 ,
C i j 2 h + 1 , C ~ i j 2 h + 1 , C ^ i j 2 h + 1 , C ¯ i j 2 h + 1 ,
D i j 2 h + 1 , D ~ i j 2 h + 1 , D ^ i j 2 h + 1 , D ¯ i j 2 h + 1 ,
E i j 2 h , E ~ i j 2 h , E ^ i j 2 h , E ¯ i j 2 h ,
F i j 2 h + 1 , F ~ i j 2 h + 1 , F ^ i j 2 h + 1 , F ¯ i j 2 h + 1 ,
G i j 2 h + 1 , G ~ i j 2 h + 1 , G ^ i j 2 h + 1 , G ¯ i j 2 h + 1 ,
H i j 2 h , H ~ i j 2 h , H ^ i j 2 h , H ¯ i j 2 h ,
I i j 2 h + 1 , I ~ i j 2 h + 1 , I ^ i j 2 h + 1 , I ¯ i j 2 h + 1 ,
J i j 2 h + 1 , J ~ i j 2 h + 1 , J ^ i j 2 h + 1 , J ¯ i j 2 h + 1 ,
L i j 2 h + 1 , L ~ i j 2 h + 1 , L ^ i j 2 h + 1 , L ¯ i j 2 h + 1 ,
M i j h k , N i j h k , P i j h k , Q i j h k , R i j h k , S i j h k , T i j h k

are non-zero constants.

References

[1] S. Badi, E. Bendib and A. Makhlouf, On the maximum number of limit cycles for a generalization of polynomial Liénard differential systems via averaging theory, J. Pure Appl. Algebra 12 (2016), no. 4, 2971–2985. Search in Google Scholar

[2] A. Boulfoul, A. Makhlouf and N. Mellahi, On the limit cycles for a class of generalized Kukles differential systems, J. Appl. Anal. Comput. 9 (2019), no. 3, 864–883. 10.11948/2156-907X.20180083Search in Google Scholar

[3] A. Buică and J. Llibre, Averaging methods for finding periodic orbits via Brouwer degree, Bull. Sci. Math. 128 (2004), no. 1, 7–22. 10.1016/j.bulsci.2003.09.002Search in Google Scholar

[4] Y. Cao and C. Liu, The estimate of the amplitude of limit cycles of symmetric Liénard systems, J. Differential Equations 262 (2017), no. 3, 2025–2038. 10.1016/j.jde.2016.10.034Search in Google Scholar

[5] J. Chavarriga, E. Sáez, I. Szántó and M. Grau, Coexistence of limit cycles and invariant algebraic curves for a Kukles system, Nonlinear Anal. 59 (2004), no. 5, 673–693. 10.1016/j.na.2004.07.028Search in Google Scholar

[6] T. Chen and J. Llibre, Limit cycles of a second-order differential equation, Appl. Math. Lett. 88 (2019), 111–117. 10.1016/j.aml.2018.08.015Search in Google Scholar

[7] J. Giné, Conditions for the existence of a center for the Kukles homogeneous systems, Comput. Math. Appl. 43 (2002), no. 10–11, 1261–1269. 10.1016/S0898-1221(02)00098-6Search in Google Scholar

[8] J. Giné, J. Llibre and C. Valls, Centers for the Kukles homogeneous systems with odd degree, Bull. Lond. Math. Soc. 47 (2015), no. 2, 315–324. 10.1112/blms/bdv005Search in Google Scholar

[9] J. Giné, J. Llibre and C. Valls, Centers for the Kukles homogeneous systems with even degree, J. Appl. Anal. Comput. 7 (2017), no. 4, 1534–1548. Search in Google Scholar

[10] D. Hilbert, Mathematische Probleme. Vortrag, gehalten auf dem internationalen Mathematiker-Congress zu Paris 1900, Nachr. Ges. Wiss. Göttingen Math. Phys. Kl. 5 (1900), 253–297. Search in Google Scholar

[11] F. Jiang, Z. Ji and Y. Wang, An upper bound for the amplitude of limit cycles of Liénard-type differential systems, Electron. J. Qual. Theory Differ. Equ. 2017 (2017), Paper No. 34. 10.14232/ejqtde.2017.1.34Search in Google Scholar

[12] I. S. Koukless, Sur quelques cas de distinction entre un foyer et un centre, C. R. Dokl. Acad. Sci. URSS (N. S.) 42 (1944), 208–211. Search in Google Scholar

[13] J. Llibre, C. A. Buzzi and P. R. d. Silva, 3-dimensional Hopf bifurcation via averaging theory, Discrete Contin. Dyn. Syst. 17 (2007), no. 3, 529–540. 10.3934/dcds.2007.17.529Search in Google Scholar

[14] J. Llibre and A. C. Mereu, Limit cycles for generalized Kukles polynomial differential systems, Nonlinear Anal. 74 (2011), no. 4, 1261–1271. 10.1016/j.na.2010.09.064Search in Google Scholar

[15] J. Llibre, A. C. Mereu and M. A. Teixeira, Limit cycles of the generalized polynomial Liénard differential equations, Math. Proc. Cambridge Philos. Soc. 148 (2010), no. 2, 363–383. 10.1017/S0305004109990193Search in Google Scholar

[16] J. Llibre and C. Valls, Limit cycles for a variant of a generalized Riccati equation, Appl. Math. Lett. 68 (2017), 76–79. 10.1016/j.aml.2016.11.016Search in Google Scholar

[17] A. Makhlouf and A. Menaceur, On the limit cycles of a class of generalized Kukles polynomial differential systems via averaging theory, Int. J. Differ. Equ. 2015 (2015), Article ID 325102. 10.1155/2015/325102Search in Google Scholar

[18] N. Mellahi, A. Boulfoul and A. Makhlouf, Maximum number of limit cycles for generalized Kukles polynomial differential systems, Differ. Equ. Dyn. Syst. 27 (2019), no. 4, 493–514. 10.1007/s12591-016-0300-3Search in Google Scholar

[19] A. P. Sadovskiĭ, Cubic systems of nonlinear oscillations with seven limit cycles, Differ. Uravn. 39 (2003), no. 4, 472–481. Search in Google Scholar

[20] J. A. Sanders and F. Verhulst, Averaging Methods in Nonlinear Dynamical Systems, Appl. Math. Sci. 59, Springer, New York, 1985. 10.1007/978-1-4757-4575-7Search in Google Scholar

[21] F. Verhulst, Nonlinear Differential Equations and Dynamical Systems, Universitext, Springer, Berlin, 1990. 10.1007/978-3-642-97149-5Search in Google Scholar

[22] L. Yang and X. Zeng, An upper bound for the amplitude of limit cycles in Liénard systems with symmetry, J. Differential Equations 258 (2015), 2701–2710. 10.1016/j.jde.2014.12.021Search in Google Scholar

Received: 2020-02-15
Revised: 2020-09-16
Accepted: 2020-12-05
Published Online: 2022-04-08
Published in Print: 2023-06-01

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.4.2024 from https://www.degruyter.com/document/doi/10.1515/jaa-2021-2070/html
Scroll to top button