Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 29, 2024

Potential of multifunctional electrospun nanofibers in cancer management

  • Abduladheem AL-Attabi ORCID logo EMAIL logo , Mohanad Ali Abdulhadi , Lubna R. Al-Ameer , Mohammed Dohan Naeem Hussein , Sada Jasim Abdulameer , Rahman S. Zabibah and Ali A. Fadhil

Abstract

A controlled and sustained release of drugs is much more desirable and beneficial when dealing with cancer, as such drugs also harm normal cells. Available anticancer drugs used in chemotherapy are associated with severe side effects due to high dosage requirements. Electrospun nanofibers have an extensive surface area, controllable pore size, and tunable drug release profiles, which make these nanofibers promising candidates in the medical field. Electrospun fibrous matrices are increasingly used in cancer research as patches for drug delivery in living organisms and as scaffolds for cancer modeling in the lab. Towards these applications, nanofibers synthesized by electrospinning have exhibited great clinical potential as a biomimetic tumor microenvironment model for drug screening, a controllable platform for localized, prolonged drug release for cancer therapy, and a human cancer diagnostic tool for capture and isolation of circulating tumor cells in the bloodstream and detection of cancer-associated biomarkers. This review briefly describes most of the materials used in electrospinning. Then, we discuss two ways that electrospinning is used to fight cancer: first, as patches with anticancer agents for therapeutic cargo delivery, and second, as three-dimensional fiber for filtering and detecting cancers.


Corresponding author: Abduladheem AL-Attabi, College of Medicine, University of Thi-Qar, Al-Nasiriya, Iraq, E-mail:

  1. Research ethics: Not applicable.

  2. Author contributions: Mohammed Dohan Naeem Hussein, Mohanad Ali Abdulhadi, Lubna R. Al-Ameer, Sada Jasim Abdulameer, Rahman S. Zabibah, and Ali A. Fadhil: Conceptualization, Investigation, Writing - original draft, Writing revised draft. Abduladheem Al-Attabi: Writing - original draft, writing revised draft, Writing - review & editing, Visualization, Supervision, and Project administration. The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: Not applicable.

References

1. Xia, C., Dong, X., Li, H., Cao, M., Sun, D., He, S., Yang, F., Yan, X., Zhang, S., Chen, W. Cancer Statistics in China and United States, 2022: Profiles, Trends, and Determinants. Chin. Med. J. 2022, 135 (05), 584–590. https://doi.org/10.1097/cm9.0000000000002108.Search in Google Scholar PubMed PubMed Central

2. Azizi, M., Dianat‐Moghadam, H., Salehi, R., Farshbaf, M., Iyengar, D., Sau, S., Iyer, A. K., Valizadeh, H., Mehrmohammadi, M., Hamblin, M. R. Interactions between Tumor Biology and Targeted Nanoplatforms for Imaging Applications. Adv. Funct. Mater. 2020, 30 (19), 1910402. https://doi.org/10.1002/adfm.201910402.Search in Google Scholar PubMed PubMed Central

3. Mohammadian, F., Pilehvar-Soltanahmadi, Y., Alipour, S., Dadashpour, M., Zarghami, N. Chrysin Alters microRNAs Expression Levels in Gastric Cancer Cells: Possible Molecular Mechanism. Drug Res. 2017, 67 (09), 509–514. https://doi.org/10.1055/s-0042-119647.Search in Google Scholar PubMed

4. Zamani, R., Aval, S. F., Pilehvar-Soltanahmadi, Y., Nejati-Koshki, K., Zarghami, N. Recent Advances in Cell Electrospining of Natural and Synthetic Nanofibers for Regenerative Medicine. Drug Res. 2018, 68 (08), 425–435. https://doi.org/10.1055/s-0043-125314.Search in Google Scholar PubMed

5. Nejati-Koshki, K., Pilehvar-Soltanahmadi, Y., Alizadeh, E., Ebrahimi-Kalan, A., Mortazavi, Y., Zarghami, N. Development of Emu Oil-Loaded PCL/collagen Bioactive Nanofibers for Proliferation and Stemness Preservation of Human Adipose-Derived Stem Cells: Possible Application in Regenerative Medicine. Drug Dev. Ind. Pharm. 2017, 43 (12), 1978–1988. https://doi.org/10.1080/03639045.2017.1357731.Search in Google Scholar PubMed

6. Jeevanandam, J., Barhoum, A., Chan, Y. S., Dufresne, A., Danquah, M. K. Review on Nanoparticles and Nanostructured Materials: History, Sources, Toxicity and Regulations. Beilstein J. Nanotechnol. 2018, 9 (1), 1050–1074. https://doi.org/10.3762/bjnano.9.98.Search in Google Scholar PubMed PubMed Central

7. Liu, X.-Q., Tang, R.-Z. Biological Responses to Nanomaterials: Understanding Nano-Bio Effects on Cell Behaviors. Drug Deliv. 2017, 24 (2), 1–15. https://doi.org/10.1080/10717544.2017.1375577.Search in Google Scholar PubMed PubMed Central

8. Ahmadi, S., Pilehvar, Y., Zarghami, N., Abri, A. Efficient Osteoblastic Differentiation of Human Adipose-Derived Stem Cells on TiO2 Nanoparticles and Metformin Co-embedded Electrospun Composite Nanofibers. J. Drug Delivery Sci. Technol. 2021, 66, 102798. https://doi.org/10.1016/j.jddst.2021.102798.Search in Google Scholar

9. Keshvardoostchokami, M., Majidi, S. S., Huo, P., Ramachandran, R., Chen, M., Liu, B. Electrospun Nanofibers of Natural and Synthetic Polymers as Artificial Extracellular Matrix for Tissue Engineering. Nanomaterials 2020, 11 (1), 21. https://doi.org/10.3390/nano11010021.Search in Google Scholar PubMed PubMed Central

10. Serati-Nouri, H., Mahmoudnezhad, A., Bayrami, M., Sanajou, D., Tozihi, M., Roshangar, L., Pilehvar, Y., Zarghami, N. Sustained Delivery Efficiency of Curcumin through ZSM-5 Nanozeolites/electrospun Nanofibers for Counteracting Senescence of Human Adipose-Derived Stem Cells. J. Drug Delivery Sci. Technol. 2021, 66, 102902. https://doi.org/10.1016/j.jddst.2021.102902.Search in Google Scholar

11. Talaei, S., Mellatyar, H., Pilehvar-Soltanahmadi, Y., Asadi, A., Akbarzadeh, A., Zarghami, N. 17-Allylamino-17-demethoxygeldanamycin Loaded PCL/PEG Nanofibrous Scaffold for Effective Growth Inhibition of T47D Breast Cancer Cells. J. Drug Delivery Sci. Technol. 2019, 49, 162–168. https://doi.org/10.1016/j.jddst.2018.11.010.Search in Google Scholar

12. Pourpirali, R., Mahmoudnezhad, A., Oroojalian, F., Zarghami, N., Pilehvar, Y. Prolonged Proliferation and Delayed Senescence of the Adipose-Derived Stem Cells Grown on the Electrospun Composite Nanofiber Co-encapsulated with TiO2 Nanoparticles and Metformin-Loaded Mesoporous Silica Nanoparticles. Int. J. Pharm. 2021, 604, 120733. https://doi.org/10.1016/j.ijpharm.2021.120733.Search in Google Scholar PubMed

13. Sadeghi-Soureh, S., Jafari, R., Gholikhani-Darbroud, R., Pilehvar-Soltanahmadi, Y. Potential of Chrysin‐loaded PCL/gelatin Nanofibers for Modulation of Macrophage Functional Polarity towards Anti-inflammatory/pro-regenerative Phenotype. J. Drug Delivery Sci. Technol. 2020, 58, 101802. https://doi.org/10.1016/j.jddst.2020.101802.Search in Google Scholar

14. Zamani, R., Pilehvar-Soltanahmadi, Y., Alizadeh, E., Zarghami, N. Macrophage Repolarization Using Emu Oil-Based Electrospun Nanofibers: Possible Application in Regenerative Medicine. Artif. Cell Nanomed. Biotechnol. 2018, 46 (6), 1258–1265. https://doi.org/10.1080/21691401.2017.1367689.Search in Google Scholar PubMed

15. Wei, W., Zarghami, N., Abasi, M., Ertas, Y. N., Pilehvar, Y. Implantable Magnetic Nanofibers with ON–OFF Switchable Release of Curcumin for Possible Local Hyperthermic Chemotherapy of Melanoma. J. Biomed. Mater. Res., Part A 2022, 110 (4), 851–860. https://doi.org/10.1002/jbm.a.37333.Search in Google Scholar PubMed

16. Kennedy, K. M., Bhaw-Luximon, A., Jhurry, D. Cell-matrix Mechanical Interaction in Electrospun Polymeric Scaffolds for Tissue Engineering: implications for Scaffold Design and Performance. Acta Biomater. 2017, 50, 41–55. https://doi.org/10.1016/j.actbio.2016.12.034.Search in Google Scholar PubMed

17. Jensen, G., Morrill, C., Huang, Y. 3D Tissue Engineering, an Emerging Technique for Pharmaceutical Research. Acta Pharm. Sin. B 2018, 8 (5), 756–766. https://doi.org/10.1016/j.apsb.2018.03.006.Search in Google Scholar PubMed PubMed Central

18. Griffith, L. G., Naughton, G. Tissue Engineering – Current Challenges and Expanding Opportunities. Science 2002, 295 (5557), 1009–1014. https://doi.org/10.1126/science.1069210.Search in Google Scholar PubMed

19. Hartman, O., Zhang, C., Adams, E. L., Farach-Carson, M. C., Petrelli, N. J., Chase, B. D., Rabolt, J. F. Microfabricated Electrospun Collagen Membranes for 3-D Cancer Models and Drug Screening Applications. Biomacromolecules 2009, 10 (8), 2019–2032. https://doi.org/10.1021/bm8012764.Search in Google Scholar PubMed PubMed Central

20. Mitra, A. K., Cholkar, K., Mandal, A. Emerging Nanotechnologies for Diagnostics, Drug Delivery and Medical Devices; Elsevier, William Andrew: Oxford, UK, 2017.Search in Google Scholar

21. Hu, X., Liu, S., Zhou, G., Huang, Y., Xie, Z., Jing, X. Electrospinning of Polymeric Nanofibers for Drug Delivery Applications. J. Contr. Release 2014, 185, 12–21. https://doi.org/10.1016/j.jconrel.2014.04.018.Search in Google Scholar PubMed

22. Kajdič, S., Planinšek, O., Gašperlin, M., Kocbek, P. Electrospun Nanofibers for Customized Drug-Delivery Systems. J. Drug Delivery Sci. Technol. 2019, 51, 672–681. https://doi.org/10.1016/j.jddst.2019.03.038.Search in Google Scholar

23. Akhgari, A., Shakib, Z., Sanati, S. A Review on Electrospun Nanofibers for Oral Drug Delivery. Nanomed. J. 2017, 4 (4), 197–207.Search in Google Scholar

24. Malik, R., Garg, T., Goyal, A. K., Rath, G. Polymeric Nanofibers: Targeted Gastro-Retentive Drug Delivery Systems. J. Drug Targeting 2015, 23 (2), 109–124. https://doi.org/10.3109/1061186x.2014.965715.Search in Google Scholar

25. Dianat-Moghadam, H., Azizi, M., Eslami-S, Z., Cortés-Hernández, L. E., Heidarifard, M., Nouri, M., Alix-Panabières, C. The Role of Circulating Tumor Cells in the Metastatic Cascade: Biology, Technical Challenges, and Clinical Relevance. Cancers 2020, 12 (4), 867. https://doi.org/10.3390/cancers12040867.Search in Google Scholar PubMed PubMed Central

26. Tseng, Y.-Y., Liao, J.-Y., Chen, W.-A., Kao, Y.-C., Liu, S.-J. Sustainable Release of Carmustine from Biodegradable Poly [(D, L)-lactide-co-glycolide] Nanofibrous Membranes in the Cerebral Cavity: In Vitro and In Vivo Studies. Expet Opin. Drug Deliv. 2013, 10 (7), 879–888. https://doi.org/10.1517/17425247.2013.758102.Search in Google Scholar PubMed

27. Tseng, Y.-Y., Wang, Y.-C., Su, C.-H., Yang, T.-C., Chang, T.-M., Kau, Y.-C., Liu, S. J. Concurrent Delivery of Carmustine, Irinotecan, and Cisplatin to the Cerebral Cavity Using Biodegradable Nanofibers: In Vitro and In Vivo Studies. Colloids Surf. B Biointerfaces 2015, 134, 254–261. https://doi.org/10.1016/j.colsurfb.2015.06.055.Search in Google Scholar PubMed

28. Kuramitsu, S., Motomura, K., Natsume, A., Wakabayashi, T. Double-edged Sword in the Placement of Carmustine (BCNU) Wafers along the Eloquent Area: a Case Report. NMC Case Report J. 2015, 2 (1), 40–45. https://doi.org/10.2176/nmccrj.2014-0025.Search in Google Scholar PubMed PubMed Central

29. Ranganath, S. H., Wang, C.-H. Biodegradable Microfiber Implants Delivering Paclitaxel for Post-surgical Chemotherapy against Malignant Glioma. Biomaterials 2008, 29 (20), 2996–3003. https://doi.org/10.1016/j.biomaterials.2008.04.002.Search in Google Scholar PubMed

30. Irani, M., Sadeghi, G. M. M., Haririan, I. The Sustained Delivery of Temozolomide from Electrospun PCL-Diol-B-PU/gold Nanocompsite Nanofibers to Treat Glioblastoma Tumors. Mater. Sci. Eng. C 2017, 75, 165–174. https://doi.org/10.1016/j.msec.2017.02.029.Search in Google Scholar PubMed

31. Sun, C., Ding, Y., Zhou, L., Shi, D., Sun, L., Webster, T. J., Shen, Y. Noninvasive Nanoparticle Strategies for Brain Tumor Targeting. Nanomed. Nanotechnol. Biol. Med. 2017, 13 (8), 2605–2621. https://doi.org/10.1016/j.nano.2017.07.009.Search in Google Scholar PubMed

32. Wei, X., Chen, X., Ying, M., Lu, W. Brain Tumor-Targeted Drug Delivery Strategies. Acta Pharm. Sin. B 2014, 4 (3), 193–201. https://doi.org/10.1016/j.apsb.2014.03.001.Search in Google Scholar PubMed PubMed Central

33. Ranganath, S. H., Fu, Y., Arifin, D. Y., Kee, I., Zheng, L., Lee, H.-S., Chow, P. K. H., Wang, C. H. The Use of Submicron/nanoscale PLGA Implants to Deliver Paclitaxel with Enhanced Pharmacokinetics and Therapeutic Efficacy in Intracranial Glioblastoma in Mice. Biomaterials 2010, 31 (19), 5199–5207. https://doi.org/10.1016/j.biomaterials.2010.03.002.Search in Google Scholar PubMed

34. Chiarelli, P. A., Kievit, F. M., Zhang, M., Ellenbogen, R. G. Bionanotechnology and the Future of Glioma. Surg. Neurol. Int. 2015, 6(Suppl 1), S45. https://doi.org/10.4103/2152-7806.151334.Search in Google Scholar PubMed PubMed Central

35. Mangraviti, A., Gullotti, D., Tyler, B., Brem, H. Nanobiotechnology-based Delivery Strategies: new Frontiers in Brain Tumor Targeted Therapies. J. Controlled Release 2016, 240, 443–453. https://doi.org/10.1016/j.jconrel.2016.03.031.Search in Google Scholar PubMed

36. Irani, M., Sadeghi, G. M. M., Haririan, I. Gold Coated Poly (ε-Caprolactonediol) Based Polyurethane Nanofibers for Controlled Release of Temozolomide. Biomed. Pharmacother. 2017, 88, 667–676. https://doi.org/10.1016/j.biopha.2017.01.097.Search in Google Scholar PubMed

37. Huang, H. H., He, C. L., Wang, H. S., Mo, X. M. Preparation of Core‐shell Biodegradable Microfibers for Long‐term Drug Delivery. J. Biomed. Mater. Res., Part A 2009, 90 (4), 1243–1251. https://doi.org/10.1002/jbm.a.32543.Search in Google Scholar PubMed

38. Kim, K., Luu, Y. K., Chang, C., Fang, D., Hsiao, B. S., Chu, B., Hadjiargyrou, M. Incorporation and Controlled Release of a Hydrophilic Antibiotic Using Poly (Lactide-co-glycolide)-based Electrospun Nanofibrous Scaffolds. J. Contr. Release 2004, 98 (1), 47–56. https://doi.org/10.1016/j.jconrel.2004.04.009.Search in Google Scholar PubMed

39. Sadeghzadeh, H., Mehdipour, A., Dianat-Moghadam, H., Salehi, R., Khoshfetrat, A. B., Hassani, A., Mohammadnejad, D. PCL/Col I-Based Magnetic Nanocomposite Scaffold Provides an Osteoinductive Environment for ADSCs in Osteogenic Cues-free Media Conditions. Stem Cell Res. Ther. 2022, 13 (1), 143. https://doi.org/10.1186/s13287-022-02816-0.Search in Google Scholar PubMed PubMed Central

40. Wang, X., Ding, B., Li, B. Biomimetic Electrospun Nanofibrous Structures for Tissue Engineering. Mater. Today 2013, 16 (6), 229–241. https://doi.org/10.1016/j.mattod.2013.06.005.Search in Google Scholar PubMed PubMed Central

41. Chen, S., Boda, S. K., Batra, S. K., Li, X., Xie, J. Emerging Roles of Electrospun Nanofibers in Cancer Research. Adv. Healthcare Mater. 2018, 7 (6), 1701024. https://doi.org/10.1002/adhm.201701024.Search in Google Scholar PubMed PubMed Central

42. Liu, W., Thomopoulos, S., Xia, Y. Electrospun Nanofibers for Regenerative Medicine. Adv. Healthcare Mater. 2012, 1 (1), 10–25. https://doi.org/10.1002/adhm.201100021.Search in Google Scholar PubMed PubMed Central

43. Zhang, Y., Lim, C. T., Ramakrishna, S., Huang, Z.-M. Recent Development of Polymer Nanofibers for Biomedical and Biotechnological Applications. J. Mater. Sci. Mater. Med. 2005, 16 (10), 933–946. https://doi.org/10.1007/s10856-005-4428-x.Search in Google Scholar PubMed

44. Zeng, J., Yang, L., Liang, Q., Zhang, X., Guan, H., Xu, X., Chen, X., Jing, X. Influence of the Drug Compatibility with Polymer Solution on the Release Kinetics of Electrospun Fiber Formulation. J. Contr. Release 2005, 105 (1–2), 43–51. https://doi.org/10.1016/j.jconrel.2005.02.024.Search in Google Scholar PubMed

45. Chew, S., Wen, Y., Dzenis, Y., Leong, K. W. The Role of Electrospinning in the Emerging Field of Nanomedicine. Curr. Pharmaceut. Des. 2006, 12 (36), 4751–4770. https://doi.org/10.2174/138161206779026326.Search in Google Scholar PubMed PubMed Central

46. Deshmukh, S., Kathiresan, M., Kulandainathan, M. A. A Review on Biopolymer-Derived Electrospun Nanofibers for Biomedical and Antiviral Applications. Biomater. Sci. 2022, 10 (16), 4424–4442. https://doi.org/10.1039/d2bm00820c.Search in Google Scholar PubMed

47. Han, D., Steckl, A. J. Triaxial Electrospun Nanofiber Membranes for Controlled Dual Release of Functional Molecules. ACS Appl. Mater. Interfaces 2013, 5 (16), 8241–8245. https://doi.org/10.1021/am402376c.Search in Google Scholar PubMed

48. Zhang, B., Li, C., Chang, M. Curled Poly (Ethylene Glycol Terephthalate)/poly (Ethylene Propanediol Terephthalate) Nanofibers Produced by Side-By-Side Electrospinning. Polym. J. 2009, 41 (4), 252–253. https://doi.org/10.1295/polymj.pj2008270.Search in Google Scholar

49. Cai, M., He, H., Zhang, X., Yan, X., Li, J., Chen, F., Yuan, D., Ning, X. Efficient Synthesis of PVDF/PI Side-By-Side Bicomponent Nanofiber Membrane with Enhanced Mechanical Strength and Good Thermal Stability. Nanomaterials 2018, 9 (1), 39. https://doi.org/10.3390/nano9010039.Search in Google Scholar PubMed PubMed Central

50. Ramachandran, R., Junnuthula, V. R., Gowd, G. S., Ashokan, A., Thomas, J., Peethambaran, R., Unni, A. K. K., Panikar, D., Nair, S. V., Koyakutty, M. Theranostic 3-Dimensional Nano Brain-Implant for Prolonged and Localized Treatment of Recurrent Glioma. Sci. Rep. 2017, 7 (1), 1–16. https://doi.org/10.1038/srep43271.Search in Google Scholar PubMed PubMed Central

51. Xu, X., Chen, X., Wang, Z., Jing, X. Ultrafine PEG–PLA Fibers Loaded with Both Paclitaxel and Doxorubicin Hydrochloride and Their In Vitro Cytotoxicity. Eur. J. Pharm. Biopharm. 2009, 72 (1), 18–25. https://doi.org/10.1016/j.ejpb.2008.10.015.Search in Google Scholar PubMed

52. Nikmaram, N., Roohinejad, S., Hashemi, S., Koubaa, M., Barba, F. J., Abbaspourrad, A., Greiner, R. Emulsion-based Systems for Fabrication of Electrospun Nanofibers: food, Pharmaceutical and Biomedical Applications. RSC Adv. 2017, 7 (46), 28951–28964. https://doi.org/10.1039/c7ra00179g.Search in Google Scholar

53. Luo, X., Xie, C., Wang, H., Liu, C., Yan, S., Li, X. Antitumor Activities of Emulsion Electrospun Fibers with Core Loading of Hydroxycamptothecin via Intratumoral Implantation. Int. J. Pharm. 2012, 425 (1–2), 19–28. https://doi.org/10.1016/j.ijpharm.2012.01.012.Search in Google Scholar PubMed

54. Okuda, T., Tahara, Y., Kamiya, N., Goto, M., Kidoaki, S. S./O-nanodispersion Electrospun Fiber Mesh Effective for Sustained Release of Healthy Plasmid DNA with the Structural and Functional Integrity. J. Biomater. Sci., Polym. Ed. 2013, 24 (10), 1277–1290. https://doi.org/10.1080/09205063.2012.755600.Search in Google Scholar PubMed

55. Yoo, H. S., Kim, T. G., Park, T. G. Surface-functionalized Electrospun Nanofibers for Tissue Engineering and Drug Delivery. Adv. Drug Deliv. Rev. 2009, 61 (12), 1033–1042. https://doi.org/10.1016/j.addr.2009.07.007.Search in Google Scholar PubMed

56. Xu, X., Chen, X., Xu, X., Lu, T., Wang, X., Yang, L., Jing, X. BCNU-Loaded PEG–PLLA Ultrafine Fibers and Their In Vitro Antitumor Activity against Glioma C6 Cells. J. Contr. Release 2006, 114 (3), 307–316. https://doi.org/10.1016/j.jconrel.2006.05.031.Search in Google Scholar PubMed

57. Yohe, S. T., Herrera, V. L., Colson, Y. L., Grinstaff, M. W. 3D Superhydrophobic Electrospun Meshes as Reinforcement Materials for Sustained Local Drug Delivery against Colorectal Cancer Cells. J. Contr. Release 2012, 162 (1), 92–101. https://doi.org/10.1016/j.jconrel.2012.05.047.Search in Google Scholar PubMed PubMed Central

58. Yan, E., Fan, Y., Sun, Z., Gao, J., Hao, X., Pei, S., Wang, C., Sun, L., Zhang, D. Biocompatible Core–Shell Electrospun Nanofibers as Potential Application for Chemotherapy against Ovary Cancer. Mater. Sci. Eng. C 2014, 41, 217–223. https://doi.org/10.1016/j.msec.2014.04.053.Search in Google Scholar PubMed

59. Liu, S., Zhou, G., Liu, D., Xie, Z., Huang, Y., Wang, X., Wu, W., Jing, X. Inhibition of Orthotopic Secondary Hepatic Carcinoma in Mice by Doxorubicin-Loaded Electrospun Polylactide Nanofibers. J. Mater. Chem. B 2013, 1 (1), 101–109. https://doi.org/10.1039/c2tb00121g.Search in Google Scholar PubMed

60. Thakkar, S., Misra, M. Electrospun Polymeric Nanofibers: new Horizons in Drug Delivery. Eur. J. Pharm. Sci. 2017, 107, 148–167. https://doi.org/10.1016/j.ejps.2017.07.001.Search in Google Scholar PubMed

61. Falde, E. J., Freedman, J. D., Herrera, V. L., Yohe, S. T., Colson, Y. L., Grinstaff, M. W. Layered Superhydrophobic Meshes for Controlled Drug Release. J. Contr. Release 2015, 214, 23–29. https://doi.org/10.1016/j.jconrel.2015.06.042.Search in Google Scholar PubMed PubMed Central

62. Okuda, T., Tominaga, K., Kidoaki, S. Time-programmed Dual Release Formulation by Multilayered Drug-Loaded Nanofiber Meshes. J. Controlled Release 2010, 143 (2), 258–264. https://doi.org/10.1016/j.jconrel.2009.12.029.Search in Google Scholar PubMed

63. Zhang, Z., Liu, S., Qi, Y., Zhou, D., Xie, Z., Jing, X., Chen, X., Huang, Y. Time-programmed DCA and Oxaliplatin Release by Multilayered Nanofiber Mats in Prevention of Local Cancer Recurrence Following Surgery. J. Controlled Release 2016, 235, 125–133. https://doi.org/10.1016/j.jconrel.2016.05.046.Search in Google Scholar PubMed

64. Mellatyar, H., Talaei, S., Pilehvar-Soltanahmadi, Y., Dadashpour, M., Barzegar, A., Akbarzadeh, A., Zarghami, N. 17-DMAG-loaded Nanofibrous Scaffold for Effective Growth Inhibition of Lung Cancer Cells through Targeting HSP90 Gene Expression. Biomed. Pharmacother. 2018, 105, 1026–1032. https://doi.org/10.1016/j.biopha.2018.06.083.Search in Google Scholar PubMed

65. Brem, H. Polymers to Treat Brain Tumours. Biomaterials 1990, 11 (9), 699–701. https://doi.org/10.1016/0142-9612(90)90030-t.Search in Google Scholar PubMed

66. Bregy, A., Shah, A. H., Diaz, M. V., Pierce, H. E., Ames, P. L., Diaz, D., Komotar, R. J. The Role of Gliadel Wafers in the Treatment of High-Grade Gliomas. Expet Rev. Anticancer Ther. 2013, 13 (12), 1453–1461. https://doi.org/10.1586/14737140.2013.840090.Search in Google Scholar PubMed

67. Gallego, J., Barcia, J., Barcia-Marino, C. Fatal Outcome Related to Carmustine Implants in Glioblastoma Multiforme. Acta Neurochir. 2007, 149 (3), 261–265. https://doi.org/10.1007/s00701-006-1097-6.Search in Google Scholar PubMed

68. Mu, F., Lucas, J. T.Jr, Watts, J. M., Johnson, A. J., Bourland, J. D., Laxton, A. W., Chan, M. D., Tatter, S. B. Tumor Resection with Carmustine Wafer Placement as Salvage Therapy after Local Failure of Radiosurgery for Brain Metastasis. J. Clin. Neurosci. 2015, 22 (3), 561–565. https://doi.org/10.1016/j.jocn.2014.08.020.Search in Google Scholar PubMed PubMed Central

69. Han, D., Serra, R., Gorelick, N., Fatima, U., Eberhart, C. G., Brem, H., Tyler, B., Steckl, A. J. Multi-layered Core-Sheath Fiber Membranes for Controlled Drug Release in the Local Treatment of Brain Tumor. Sci. Rep. 2019, 9 (1), 1–12. https://doi.org/10.1038/s41598-019-54283-y.Search in Google Scholar PubMed PubMed Central

70. Han, D., Sasaki, M., Yoshino, H., Kofuji, S., Sasaki, A. T., Steckl, A. J. In-vitro Evaluation of MPA-Loaded Electrospun Coaxial Fiber Membranes for Local Treatment of Glioblastoma Tumor Cells. J. Drug Delivery Sci. Technol. 2017, 40, 45–50. https://doi.org/10.1016/j.jddst.2017.05.017.Search in Google Scholar

71. Chou, S.-F., Carson, D., Woodrow, K. A. Current Strategies for Sustaining Drug Release from Electrospun Nanofibers. J. Controlled Release 2015, 220, 584–591. https://doi.org/10.1016/j.jconrel.2015.09.008.Search in Google Scholar PubMed PubMed Central

72. Samadzadeh, S., Babazadeh, M., Zarghami, N., Pilehvar-Soltanahmadi, Y., Mousazadeh, H. An Implantable Smart Hyperthermia Nanofiber with Switchable, Controlled and Sustained Drug Release: possible Application in Prevention of Cancer Local Recurrence. Mater. Sci. Eng. C 2021, 118, 111384. https://doi.org/10.1016/j.msec.2020.111384.Search in Google Scholar PubMed

73. Demir, D., Güreş, D., Tecim, T., Genç, R., Bölgen, N. Magnetic Nanoparticle-Loaded Electrospun Poly (ε-Caprolactone) Nanofibers for Drug Delivery Applications. Appl. Nanosci. 2018, 8 (6), 1461–1469. https://doi.org/10.1007/s13204-018-0830-9.Search in Google Scholar

74. Qiu, K., He, C., Feng, W., Wang, W., Zhou, X., Yin, Z., Chen, L., Wang, H., Mo, X. Doxorubicin-loaded Electrospun Poly (L-Lactic Acid)/mesoporous Silica Nanoparticles Composite Nanofibers for Potential Postsurgical Cancer Treatment. J. Mater. Chem. B 2013, 1 (36), 4601–4611. https://doi.org/10.1039/c3tb20636j.Search in Google Scholar PubMed

75. Chen, M., Feng, W., Lin, S., He, C., Gao, Y., Wang, H. Antitumor Efficacy of a PLGA Composite Nanofiber Embedded with Doxorubicin@ MSNs and Hydroxycamptothecin@ HANPs. RSC Adv. 2014, 4 (95), 53344–53351. https://doi.org/10.1039/c4ra09122a.Search in Google Scholar

76. Imashiro, C., Takeshita, H., Morikura, T., Miyata, S., Takemura, K., Komotori, J. Development of Accurate Temperature Regulation Culture System with Metallic Culture Vessel Demonstrates Different Thermal Cytotoxicity in Cancer and Normal Cells. Sci. Rep. 2021, 11 (1), 1–12. https://doi.org/10.1038/s41598-021-00908-0.Search in Google Scholar PubMed PubMed Central

77. Lin, T.-C., Lin, F.-H., Lin, J.-C. In Vitro Feasibility Study of the Use of a Magnetic Electrospun Chitosan Nanofiber Composite for Hyperthermia Treatment of Tumor Cells. Acta Biomater. 2012, 8 (7), 2704–2711. https://doi.org/10.1016/j.actbio.2012.03.045.Search in Google Scholar PubMed

78. Song, C. W. Effect of Local Hyperthermia on Blood Flow and Microenvironment: a Review. Cancer Res. 1984, 44(10_Suppl), 4721s–4730s.Search in Google Scholar

79. Yallapu, M. M., Othman, S. F., Curtis, E. T., Gupta, B. K., Jaggi, M., Chauhan, S. C. Multi-functional Magnetic Nanoparticles for Magnetic Resonance Imaging and Cancer Therapy. Biomaterials 2011, 32 (7), 1890–1905. https://doi.org/10.1016/j.biomaterials.2010.11.028.Search in Google Scholar PubMed PubMed Central

80. Dianat-Moghadam, H., Heidarifard, M., Mahari, A., Shahgolzari, M., Keshavarz, M., Nouri, M., Amoozgar, Z. TRAIL in Oncology: from Recombinant TRAIL to Nano-And Self-Targeted TRAIL-Based Therapies. Pharmacol. Res. 2020, 155, 104716. https://doi.org/10.1016/j.phrs.2020.104716.Search in Google Scholar PubMed

81. Yang, Y., Zhu, W., Dong, Z., Chao, Y., Xu, L., Chen, M., Liu, Z. 1D Coordination Polymer Nanofibers for Low‐temperature Photothermal Therapy. Adv. Mater. 2017, 29 (40), 1703588. https://doi.org/10.1002/adma.201703588.Search in Google Scholar PubMed

82. GhavamiNejad, A., Sasikala, A. R. K., Unnithan, A. R., Thomas, R. G., Jeong, Y. Y., Vatankhah‐Varnoosfaderani, M., Stadler, F. J., Park, C. H., Kim, C. S. Mussel‐inspired Electrospun Smart Magnetic Nanofibers for Hyperthermic Chemotherapy. Adv. Funct. Mater. 2015, 25 (19), 2867–2875. https://doi.org/10.1002/adfm.201500389.Search in Google Scholar

83. Kim, Y. J., Ebara, M., Aoyagi, T. A Smart Hyperthermia Nanofiber with Switchable Drug Release for Inducing Cancer Apoptosis. Adv. Funct. Mater. 2013, 23 (46), 5753–5761. https://doi.org/10.1002/adfm.201300746.Search in Google Scholar

84. Chen, M., Tan, Y., Dong, Z., Lu, J., Han, X., Jin, Q., Zhu, W., Shen, J., Cheng, L., Liu, Z., Chen, Q. Injectable Anti-inflammatory Nanofiber Hydrogel to Achieve Systemic Immunotherapy Post Local Administration. Nano Lett. 2020, 20 (9), 6763–6773. https://doi.org/10.1021/acs.nanolett.0c02684.Search in Google Scholar PubMed

85. Mahmoudi, R., Dianat-Moghadam, H., Poorebrahim, M., Siapoush, S., Poortahmasebi, V., Salahlou, R., Rahmati, M. Recombinant Immunotoxins Development for HER2-Based Targeted Cancer Therapies. Cancer Cell Int. 2021, 21, 1–17. https://doi.org/10.1186/s12935-021-02182-6.Search in Google Scholar PubMed PubMed Central

86. Fu, L., Zhang, J., Wu, C., Wang, W., Wang, D., Hu, Z., Wang, Z. A Novel PD-L1 Targeting Peptide Self-Assembled Nanofibers for Sensitive Tumor Imaging and Photothermal Immunotherapy In Vivo. Nano Res. 2022, 15 (8), 7286–7294. https://doi.org/10.1007/s12274-022-4331-5.Search in Google Scholar

87. Jain, A., Betancur, M., Patel, G. D., Valmikinathan, C. M., Mukhatyar, V. J., Vakharia, A., Pai, S. B., Brahma, B., MacDonald, T. J., Bellamkonda, R. V. Guiding Intracortical Brain Tumour Cells to an Extracortical Cytotoxic Hydrogel Using Aligned Polymeric Nanofibres. Nature Mater. 2014, 13 (3), 308–316. https://doi.org/10.1038/nmat3878.Search in Google Scholar PubMed

88. Cristofanilli, M., Budd, G. T., Ellis, M. J., Stopeck, A., Matera, J., Miller, M. C., Reuben, J. M., Doyle, G. V., Allard, W. J., Terstappen, L. W., Hayes, D. F. Circulating Tumor Cells, Disease Progression, and Survival in Metastatic Breast Cancer. N. Engl. J. Med. 2004, 351 (8), 781–791. https://doi.org/10.1056/nejmoa040766.Search in Google Scholar

89. Steeg, P. S. Tumor Metastasis: Mechanistic Insights and Clinical Challenges. Nat. Med. 2006, 12 (8), 895–904. https://doi.org/10.1038/nm1469.Search in Google Scholar PubMed

90. Sawyers, C. L. The Cancer Biomarker Problem. Nature 2008, 452 (7187), 548–552. https://doi.org/10.1038/nature06913.Search in Google Scholar PubMed

91. Sharma, S., Zhuang, R., Long, M., Pavlovic, M., Kang, Y., Ilyas, A., Asghar, W. Circulating Tumor Cell Isolation, Culture, and Downstream Molecular Analysis. Biotechnol. Adv. 2018, 36 (4), 1063–1078. https://doi.org/10.1016/j.biotechadv.2018.03.007.Search in Google Scholar PubMed PubMed Central

92. Shishido, S. N., Carlsson, A., Nieva, J., Bethel, K., Hicks, J. B., Bazhenova, L., Kuhn, P. Circulating Tumor Cells as a Response Monitor in Stage IV Non-small Cell Lung Cancer. J. Transl. Med. 2019, 17 (1), 1–14. https://doi.org/10.1186/s12967-019-2035-8.Search in Google Scholar PubMed PubMed Central

93. Smerage, J. B., Barlow, W. E., Hortobagyi, G. N., Winer, E. P., Leyland-Jones, B., Srkalovic, G., Tejwani, S., Schott, A. F., O’Rourke, M. A., Lew, D. L., Doyle, G. V., Gralow, J. R., Livingston, R. B., Hayes, D. F. Circulating Tumor Cells and Response to Chemotherapy in Metastatic Breast Cancer: SWOG S0500. J. Clin. Oncol. 2014, 32 (31), 3483. https://doi.org/10.1200/jco.2014.56.2561.Search in Google Scholar PubMed PubMed Central

94. Cristofanilli, M., Hayes, D. F., Budd, G. T., Ellis, M. J., Stopeck, A., Reuben, J. M., Doyle, G. V., Matera, J., Allard, W. J., Miller, M. C., Fritsche, H. A., Hortobagyi, G. N., Terstappen, L. W. Circulating Tumor Cells: a Novel Prognostic Factor for Newly Diagnosed Metastatic Breast Cancer. J. Clin. Oncol. 2005, 23 (7), 1420–1430. https://doi.org/10.1200/jco.2005.08.140.Search in Google Scholar

95. Miller, M. C., Doyle, G. V., Terstappen, L. W. Significance of Circulating Tumor Cells Detected by the CellSearch System in Patients with Metastatic Breast Colorectal and Prostate Cancer. J. Oncol. 2010, 2010, 617421. https://doi.org/10.1155/2010/617421.Search in Google Scholar PubMed PubMed Central

96. De Bono, J. S., Scher, H. I., Montgomery, R. B., Parker, C., Miller, M. C., Tissing, H., Doyle, G. V., Terstappen, L. W., Pienta, K. J., Raghavan, D. Circulating Tumor Cells Predict Survival Benefit from Treatment in Metastatic Castration-Resistant Prostate Cancer. Clin. Cancer Res. 2008, 14 (19), 6302–6309. https://doi.org/10.1158/1078-0432.ccr-08-0872.Search in Google Scholar PubMed

97. Shaffer, D. R., Leversha, M. A., Danila, D. C., Lin, O., Gonzalez-Espinoza, R., Gu, B., Anand, A., Smith, K., Maslak, P., Doyle, G. V., Terstappen, L. W., Lilja, H., Heller, G., Fleisher, M., Scher, H. I. Circulating Tumor Cell Analysis in Patients with Progressive Castration-Resistant Prostate Cancer. Clin. Cancer Res. 2007, 13 (7), 2023–2029. https://doi.org/10.1158/1078-0432.ccr-06-2701.Search in Google Scholar

98. Xue, J., Pisignano, D., Xia, Y. Maneuvering the Migration and Differentiation of Stem Cells with Electrospun Nanofibers. Adv. Sci. 2020, 7 (15), 2000735. https://doi.org/10.1002/advs.202000735.Search in Google Scholar PubMed PubMed Central

99. Miller, B. S., Briggs, K. K., Downie, B., Steadman, J. R. Clinical Outcomes Following the Microfracture Procedure for Chondral Defects of the Knee: a Longitudinal Data Analysis. Cartilage 2010, 1 (2), 108–112. https://doi.org/10.1177/1947603510366575.Search in Google Scholar PubMed PubMed Central

100. Musella, V., Pietrantonio, F., Di Buduo, E., Iacovelli, R., Martinetti, A., Sottotetti, E., Bossi, I., Maggi, C., Di Bartolomeo, M., de Braud, F., Daidone, M. G., Cappelletti, V. Circulating Tumor Cells as a Longitudinal Biomarker in Patients with Advanced Chemorefractory, RAS‐BRAF Wild‐type Colorectal Cancer Receiving Cetuximab or Panitumumab. Int. J. Cancer 2015, 137 (6), 1467–1474. https://doi.org/10.1002/ijc.29493.Search in Google Scholar PubMed

101. Riethdorf, S., Fritsche, H., Müller, V., Rau, T., Schindlbeck, C., Rack, B., Janni, W., Coith, C., Beck, K., Jänicke, F., Jackson, S., Gornet, T., Cristofanilli, M., Pantel, K. Detection of Circulating Tumor Cells in Peripheral Blood of Patients with Metastatic Breast Cancer: a Validation Study of the CellSearch System. Clin. Cancer Res. 2007, 13 (3), 920–928. https://doi.org/10.1158/1078-0432.ccr-06-1695.Search in Google Scholar PubMed

102. Alix-Panabières, C., Pantel, K. Challenges in Circulating Tumour Cell Research. Nat. Rev. Cancer 2014, 14 (9), 623–631. https://doi.org/10.1038/nrc3820.Search in Google Scholar PubMed

103. Desitter, I., Guerrouahen, B. S., Benali-Furet, N., Wechsler, J., Jänne, P. A., Kuang, Y., Yanagita, M., Wang, L., Berkowitz, J. A., Distel, R. J., Cayre, Y. E. A New Device for Rapid Isolation by Size and Characterization of Rare Circulating Tumor Cells. Anticancer Res. 2011, 31 (2), 427–441.Search in Google Scholar

104. Gogoi, P., Sepehri, S., Zhou, Y., Gorin, M. A., Paolillo, C., Capoluongo, E., Gleason, K., Payne, A., Boniface, B., Cristofanilli, M., Morgan, T. M., Fortina, P., Pienta, K. J., Handique, K., Wang, Y. Development of an Automated and Sensitive Microfluidic Device for Capturing and Characterizing Circulating Tumor Cells (CTCs) from Clinical Blood Samples. PloS one 2016, 11 (1), e0147400. https://doi.org/10.1371/journal.pone.0147400.Search in Google Scholar PubMed PubMed Central

105. Paterlini-Brechot, P., Benali, N. L. Circulating Tumor Cells (CTC) Detection: Clinical Impact and Future Directions. Cancer Lett. 2007, 253 (2), 180–204. https://doi.org/10.1016/j.canlet.2006.12.014.Search in Google Scholar PubMed

106. Nelson, NJ. Circulating Tumor Cells: Will They Be Clinically Useful? JNCI 2010, 102 (3), 146–148. https://doi.org/10.1093/jnci/djq016.Search in Google Scholar PubMed

107. Geckil, H., Xu, F., Zhang, X., Moon, S., Demirci, U. Engineering Hydrogels as Extracellular Matrix Mimics. Nanomedicine 2010, 5 (3), 469–484. https://doi.org/10.2217/nnm.10.12.Search in Google Scholar PubMed PubMed Central

108. Zhang, N., Deng, Y., Tai, Q., Cheng, B., Zhao, L., Shen, Q., He, R., Hong, L., Liu, W., Guo, S., Liu, K., Tseng, H., Xiong, B., Zhao, X. Electrospun TiO2 Nanofiber‐based Cell Capture Assay for Detecting Circulating Tumor Cells from Colorectal and Gastric Cancer Patients. Adv. Mater. 2012, 24 (20), 2756–2760. https://doi.org/10.1002/adma.201200155.Search in Google Scholar PubMed

109. Yang, G., Li, X., He, Y., Xiong, X., Wang, P., Zhou, S. Capturing Circulating Tumor Cells through a Combination of Hierarchical Nanotopography and Surface Chemistry. ACS Biomater. Sci. Eng. 2017, 4 (6), 2081–2088. https://doi.org/10.1021/acsbiomaterials.7b00683.Search in Google Scholar PubMed

110. Liu, H.-q., Yu, X.-l., Cai, B., You, S.-j., He, Z.-b., Huang, Q.-q., Rao, L., Li, S. s., Liu, C., Sun, W. w., Liu, W., Guo, S. s., Zhao, X. z. Capture and Release of Cancer Cells Using Electrospun Etchable MnO2 Nanofibers Integrated in Microchannels. Appl. Phys. Lett. 2015, 106 (9), 093703. https://doi.org/10.1063/1.4914015.Search in Google Scholar

111. Yu, C.-C., Chen, Y.-W., Yeh, P.-Y., Hsiao, Y.-S., Lin, W.-T., Kuo, C.-W., Chueh, D. Y., You, Y. W., Shyue, J. J., Chang, Y. C., Chen, P. Random and Aligned Electrospun PLGA Nanofibers Embedded in Microfluidic Chips for Cancer Cell Isolation and Integration with Air Foam Technology for Cell Release. J. Nanobiotechnol. 2019, 17 (1), 1–13. https://doi.org/10.1186/s12951-019-0466-2.Search in Google Scholar PubMed PubMed Central

112. Zhao, L., Lu, Y. T., Li, F., Wu, K., Hou, S., Yu, J., Shen, Q., Wu, D., Song, M., OuYang, W., Luo, Z., Lee, T., Fang, X., Shao, C., Xu, X., Garcia, M. A., Chung, L. W. K., Rettig, M., Tseng, H., Posadas, E. M. High‐purity Prostate Circulating Tumor Cell Isolation by a Polymer Nanofiber‐embedded Microchip for Whole Exome Sequencing. Adv. Mater. 2013, 25 (21), 2897–2902. https://doi.org/10.1002/adma.201205237.Search in Google Scholar PubMed PubMed Central

113. Hou, S., Zhao, L., Shen, Q., Yu, J., Ng, C., Kong, X., Wu, D., Song, M., Shi, X., Xu, X., OuYang, W., He, R., Zhao, X., Lee, T., Brunicardi, F. C., Garcia, M. A., Ribas, A., Lo, R. S., Tseng, H. Polymer Nanofiber‐embedded Microchips for Detection, Isolation, and Molecular Analysis of Single Circulating Melanoma Cells. Angew. Chem. 2013, 125 (12), 3463–3467. https://doi.org/10.1002/ange.201208452.Search in Google Scholar

114. Diaz, L. A.Jr, Bardelli, A. Liquid Biopsies: Genotyping Circulating Tumor DNA. J. Clin. Oncol. 2014, 32 (6), 579. https://doi.org/10.1200/jco.2012.45.2011.Search in Google Scholar

115. Lianidou, ES. Circulating Tumor Cell Isolation: A Marathon Race Worth Running. Clin. Chem. 2014, 62(2), 287–289. https://doi.org/10.1373/clinchem.2013.216010.Search in Google Scholar PubMed

116. Pantel, K., Alix-Panabières, C. Circulating Tumour Cells in Cancer Patients: Challenges and Perspectives. Trends Mol. Med. 2010, 16 (9), 398–406. https://doi.org/10.1016/j.molmed.2010.07.001.Search in Google Scholar PubMed

117. Senthamizhan, A., Balusamy, B., Uyar, T. Recent Progress on Designing Electrospun Nanofibers for Colorimetric Biosensing Applications. Curr. Opin. Biomed. Eng. 2020, 13, 1–8. https://doi.org/10.1016/j.cobme.2019.08.002.Search in Google Scholar

118. Muz, B., de la Puente, P., Azab, F., Azab, A. K. The Role of Hypoxia in Cancer Progression, Angiogenesis, Metastasis, and Resistance to Therapy. Hypoxia 2015, 3, 83. https://doi.org/10.2147/hp.s93413.Search in Google Scholar PubMed PubMed Central

119. Xue, R., Nelson, M. T., Teixeira, S. A., Viapiano, M. S., Lannutti, J. J. Cancer Cell Aggregate Hypoxia Visualized In Vitro via Biocompatible Fiber Sensors. Biomaterials 2016, 76, 208–217. https://doi.org/10.1016/j.biomaterials.2015.10.055.Search in Google Scholar PubMed

120. Zhang, Y., Deng, D., Zhu, X., Liu, S., Zhu, Y., Han, L., Luo, L. Electrospun Bimetallic Au–Ag/Co3O4 Nanofibers for Sensitive Detection of Hydrogen Peroxide Released from Human Cancer Cells. Anal. Chim. Acta 2018, 1042, 20–28. https://doi.org/10.1016/j.aca.2018.07.065.Search in Google Scholar PubMed

121. Wang, X., Wang, X., Wang, X., Chen, F., Zhu, K., Xu, Q., Tang, M. Novel Electrochemical Biosensor Based on Functional Composite Nanofibers for Sensitive Detection of P53 Tumor Suppressor Gene. Anal. Chim. Acta 2013, 765, 63–69. https://doi.org/10.1016/j.aca.2012.12.037.Search in Google Scholar PubMed

122. Torres-Martínez, E. J., Cornejo Bravo, J. M., Serrano Medina, A., Pérez González, G. L., Villarreal Gómez, L. J. A Summary of Electrospun Nanofibers as Drug Delivery System: drugs Loaded and Biopolymers Used as Matrices. Curr. Drug Delivery 2018, 15 (10), 1360–1374. https://doi.org/10.2174/1567201815666180723114326.Search in Google Scholar PubMed PubMed Central

123. Sakamoto, J. H., van de Ven, A. L., Godin, B., Blanco, E., Serda, R. E., Grattoni, A., Ziemys, A., Bouamrani, A., Hu, T., Ranganathan, S. I., De Rosa, E., Martinez, J. O., Smid, C. A., Buchanan, R. M., Lee, S. Y., Srinivasan, S., Landry, M., Meyn, A., Tasciotti, E., Liu, X., Decuzzi, P., Ferrari, M. Enabling Individualized Therapy through Nanotechnology. Pharmacol. Res. 2010, 62 (2), 57–89. https://doi.org/10.1016/j.phrs.2009.12.011.Search in Google Scholar PubMed PubMed Central

124. Valencia, P. M., Farokhzad, O. C., Karnik, R., Langer, R. Microfluidic Technologies for Accelerating the Clinical Translation of Nanoparticles. Nat. Nanotechnol. 2012, 7 (10), 623–629. https://doi.org/10.1038/nnano.2012.168.Search in Google Scholar PubMed PubMed Central

Received: 2023-04-09
Accepted: 2023-07-13
Published Online: 2024-02-29
Published in Print: 2024-03-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.4.2024 from https://www.degruyter.com/document/doi/10.1515/ijmr-2023-0125/html
Scroll to top button