Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 14, 2024

Synthesis of hydroxyapatite matrix Ag and CNT particle reinforced hybrid biocomposites with improved mechanical and antibacterial properties

  • Serdar Özkaya ORCID logo EMAIL logo , Aykut Çanakçi , A. Hasan Karabacak , Müslim Çelebi , Sabriye Çanakçi and Esma Ceylan

Abstract

Hydroxyapatite is an important biomaterial for orthopaedic applications due to its high structural similarity to human bone. However, weak mechanical and antibacterial properties limit the use of hydroxyapatite compared to metallic implants such as Ti and 316L alloys for direct use in the human skeleton. To overcome these shortcomings, we have prepared hydroxyapatite matrix silver and carbon nanotube reinforced biocomposites. Silver particles have beneficial effects on biomaterials due to their effective antibacterial activity. In addition, CNT particles are known for their high strength and their ability to improve the mechanical properties of composite materials. To prepare the hydroxyapatite-based composites, the powder blends with different reinforcement types (Ag, CNT) and ratios were ground using a planetary ball mill. The biocomposite powders were then cold pressed under 500 MPa pressure to obtain green samples. The sintering process was carried out at 1200 °C for 4 h. The microstructural and structural investigations were carried out by scanning electron microscopy and X-ray diffraction, respectively. In order to better evaluate the mechanical properties of the samples, hardness measurements, compression and fracture tests were carried out. Antibacterial tests were also carried out against various micro-organisms. Both types of reinforcement were found to be effective in improving the mechanical properties. In addition, it was observed that CNT reinforcement slightly increased the antibacterial resistance, but silver-reinforced samples provided excellent antibacterial resistance.


Corresponding author: Serdar Özkaya, Metallurgy and Materials Engineering Department, Karadeniz Technical University, 61080, Trabzon, Türkiye, E-mail:

Acknowledgments

The researchers would like to thank Akyüz Chemical Materials for providing the hydroxyapatite powders.

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission. Serdar Özkaya: Conceptualization, Methodology, Data curation, Writing – Original draft preparation, Writing – Reviewing and Editing. Aykut Çanakçi: Writing – Original draft preparation, Data curation, Writing – Reviewing and Editing. Abdullah Hasan Karabacak: Writing – Reviewing and Editing. Müslim Çelebi: Writing – Reviewing and Editing. Sabriye Çanakçi: Conceptualization, Methodology, Data curation, Visualization. Esma Ceylan: Methodology, Data curation.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: The authors are grateful to KaradenizTechnical University Research Fund for financially supportingthis research (FDK-2018-7168).

  5. Data availability: Not applicable.

References

1. Dorozhkin, S. V. Int. J. Mater. Chem. 2012, 2, 19–46. https://doi.org/10.5923/j.ijmc.20120201.04.Search in Google Scholar

2. Liu, Q. Hydroxyapatite/polymer composites for bone replacement; University of Twente: Enschede, 1997; 149 p.Search in Google Scholar

3. Ustundag, C. B. Mater. Lett. 2016, 167, 89–92. https://doi.org/10.1016/j.matlet.2015.12.135.Search in Google Scholar

4. Evis, Z., Usta, M., Kutbay, I. Mater. Chem. Phys. 2008, 110, 68–75. https://doi.org/10.1016/j.matchemphys.2008.01.009.Search in Google Scholar

5. Zhou, H., Lee, J. Acta Biomater. 2011, 7, 2769–2781. https://doi.org/10.1016/j.actbio.2011.03.019.Search in Google Scholar PubMed

6. Yin, I. X., Zhang, J., Zhao, I. S., Mei, M. L., Li, Q., Chu, C. H. Int. J. Nanomed. 2020, 15, 2555–2562. https://doi.org/10.2147/IJN.S246764.Search in Google Scholar PubMed PubMed Central

7. Imani, M. M., Kiani, M., Rezaei, F., Souri, R., Safaei, M. Ceram. Int. 2021, 47, 33398–33404. https://doi.org/10.1016/j.ceramint.2021.08.246.Search in Google Scholar

8. Li, M., Xiong, P., Yan, F., Li, S., Ren, C., Yin, Z., Li, A., Li, H., Ji, X., Zheng, Y., Cheng, Y. Bioact. Mater. 2018, 3, 1–18. https://doi.org/10.1016/j.bioactmat.2018.01.001.Search in Google Scholar PubMed PubMed Central

9. Shaly, A. A., Priya, G. H., Linet, J. M. Phys. B 2020, 590, 412223. https://doi.org/10.1016/j.physb.2020.412223.Search in Google Scholar

10. Dorozhkin, S. V. Prog. Biomater. 2012, 1, 1. https://doi.org/10.1186/2194-0517-1-1.Search in Google Scholar PubMed PubMed Central

11. Gautam, A., Gautam, C., Mishra, M., Sahu, S., Nanda, R., Kisan, B., Gautam, R. K., Prakash, R., Sharma, K., Singh, D., Gautam, S. S. Ceram. Int. 2021, 47, 30203–30220. https://doi.org/10.1016/j.ceramint.2021.07.200.Search in Google Scholar

12. Islam, M. S., Todo, M. Mater. Lett. 2016, 173, 231–234. https://doi.org/10.1016/j.matlet.2016.03.028.Search in Google Scholar

13. Khamkongkaeo, A., Boonchuduang, T., Klysubun, W., Amonpattaratkit, P., thaichnok Chunate, H., Tuchinda, N., Pimsawat, A., Daengsakul, S., Suksangrat, P., Sailuam, W., Vongpramate, D., Bootchanont, A., Lohwongwatana, B. Ceram. Int. 2021, 47, 34575–34584. https://doi.org/10.1016/j.ceramint.2021.08.372.Search in Google Scholar

14. Antonijević, D., Despotović, A., Biočanin, V., Milošević, M., Trišić, D., Lazović, V., Zogović, N., Milašin, J., Ilić, D. Ceram. Int. 2021, 47, 28913–28923. https://doi.org/10.1016/j.ceramint.2021.07.052.Search in Google Scholar

15. Panda, S., Biswas, C. K., Paul, S. Ceram. Int. 2021, 47, 28122–28144. https://doi.org/10.1016/j.ceramint.2021.07.100.Search in Google Scholar

16. Pei, X., Wang, J., Wan, Q., Kang, L., Xiao, M., Bao, H. Surf. Coat. Technol. 2011, 205, 4380–4387. https://doi.org/10.1016/j.surfcoat.2011.03.036.Search in Google Scholar

17. Vu, A. A., Robertson, S. F., Ke, D., Bandyopadhyay, A., Bose, S. Acta Biomater. 2019, 92, 325–335. https://doi.org/10.1016/j.actbio.2019.05.020.Search in Google Scholar PubMed

18. Li, D., Gong, Y., Chen, X., Zhang, B., Zhang, H., Jin, P., Li, H. Surf. Coat. Technol. 2017, 330, 87–91. https://doi.org/10.1016/J.SURFCOAT.2017.09.085.Search in Google Scholar

19. Goloshchapov, D. L., Kashkarov, V. M., Rumyantseva, N. A., Seredin, P. V., Lenshin, A. S., Agapov, B. L., Domashevskaya, E. P. Ceram. Int. 2013, 39, 4539–4549. https://doi.org/10.1016/j.ceramint.2012.11.050.Search in Google Scholar

20. Chai, F., Hornez, J. C., Blanchemain, N., Neut, C., Descamps, M., Hildebrand, H. F. Biomol. Eng. 2007, 24, 510–514. https://doi.org/10.1016/J.BIOENG.2007.08.001.Search in Google Scholar

21. Kanellakopoulou, K., Giamarellos-Bourboulis, E. J. Drugs 2000, 59, 1223–1232. https://doi.org/10.2165/00003495-200059060-00003.Search in Google Scholar PubMed

22. Yang, X., Huang, P., Wang, H., Cai, S., Liao, Y., Mo, Z., Xu, X., Ding, C., Zhao, C., Li, J. Colloids Surf. B Biointerfaces 2017, 160, 136–143. https://doi.org/10.1016/J.COLSURFB.2017.09.006.Search in Google Scholar PubMed

23. Kurtjak, M., Vukomanović, M., Krajnc, A., Kramer, L., Turk, B., Suvorov, D. RSC Adv. 2016, 6, 112839–112852. https://doi.org/10.1039/C6RA23424K.Search in Google Scholar

24. Fu, C., Zhang, X., Savino, K., Gabrys, P., Gao, Y., Chaimayo, W., Miller, B. L., Yates, M. Z. Surf. Coat. Technol. 2016, 301, 13–19. https://doi.org/10.1016/J.SURFCOAT.2016.03.010.Search in Google Scholar

25. Jegatheeswaran, S., Sundrarajan, M. Mater. Sci. Eng. C. 2015, 51, 174–181. https://doi.org/10.1016/J.MSEC.2015.02.012.Search in Google Scholar PubMed

26. Gong, P., Li, H., He, X., Wang, K., Hu, J., Tan, W., Zhang, S., Yang, X. Nanotech 2007, 18, 285604. https://doi.org/10.1088/0957-4484/18/28/285604.Search in Google Scholar

27. Castellano, J. J., Shafii, S. M., Ko, F., Donate, G., Wright, T. E., Mannari, R. J., Payne, W. G., Smith, D. J., Robson, M. C. Int. Wound J. 2007, 4, 114–122. https://doi.org/10.1111/J.1742-481X.2007.00316.X.Search in Google Scholar

28. Lansdown, A. B., Silver, I.. J. Wound Care 2002, 11, 125–130. https://doi.org/10.12968/JOWC.2002.11.4.26389.Search in Google Scholar PubMed

29. Palmero, P. Nanomaterials 2015, 5, 656–696. https://doi.org/10.3390/NANO5020656.Search in Google Scholar PubMed PubMed Central

30. Yao, W., Liu, J., Holland, T. B., Huang, L., Xiong, Y., Schoenung, J. M., Mukherjee, A. K. Scr. Mater. 2011, 65, 143–146. https://doi.org/10.1016/J.SCRIPTAMAT.2011.03.032.Search in Google Scholar

31. Gan, Y., Zhou, B. Scr. Mater. 2001, 45, 625–630. https://doi.org/10.1016/S1359-6462(01)01066-1.Search in Google Scholar

32. Imani Yengejeh, S., Kazemi, S. A., Öchsner, A. Computat. Mater. Sci. 2017, 136, 85–101. https://doi.org/10.1016/j.commatsci.2017.04.023.Search in Google Scholar

33. Zhao, Q., Shen, Y., Ji, M., Zhang, L., Jiang, T., Li, C. J. Ind. Eng. Chem. 2014, 20, 544–548. https://doi.org/10.1016/j.jiec.2013.04.040.Search in Google Scholar

34. Chen, Y., Zhang, Y. Q., Zhang, T. H., Gan, C. H., Zheng, C. Y., Yu, G. Carbon 2005, 44, 37–45. https://doi.org/10.1016/j.carbon.2005.07.011.Search in Google Scholar

35. Zhao, L., Gao, L. Carbon 2004, 42, 423–426. https://doi.org/10.1016/J.CARBON.2003.10.024.Search in Google Scholar

36. Kim, J. D., Yun, H., Kim, G. C., Lee, C. W., Choi, H. C. Appl. Surf. Sci. 2013, 283, 227–233. https://doi.org/10.1016/J.APSUSC.2013.06.086.Search in Google Scholar

37. Kazmi, S. J., Shehzad, M. A., Mehmood, S., Yasar, M., Naeem, A., Bhatti, A. S. Sensor Actuator Phys. 2014, 216, 287–294. https://doi.org/10.1016/J.SNA.2014.06.002.Search in Google Scholar

38. Liu, J., Wang, X., Saberi, A., Heydari, Z. J. Mech. Behav. Biomed. Mater. 2022, 138. https://doi.org/10.1016/j.jmbbm.2022.105601.Search in Google Scholar PubMed

39. Sadoun, A. M., Abd El-Wadoud, F., Fathy, A., Kabeel, A. M., Megahed, A. A. J. Mater. Res. Technol. 2021, 15, 500–510. https://doi.org/10.1016/j.jmrt.2021.08.026.Search in Google Scholar

40. Chai, S., Xie, Y., Yang, L. Curr. Opin. Solid State Mater. Sci. 2022, 26, 101043. https://doi.org/10.1016/J.COSSMS.2022.101043.Search in Google Scholar

41. Liu, L., Shinozaki, K. Mater. Sci. Eng. A 2021, 817, 141372. https://doi.org/10.1016/j.msea.2021.141372.Search in Google Scholar

42. Muralithran, G., Ramesh, S. Ceram. Int. 2000, 26, 221–230. https://doi.org/10.1016/S0272-8842(99)00046-2.Search in Google Scholar

43. Carrodeguas, R. G., De Aza, S. Acta Biomater. 2011, 7, 3536–3546. https://doi.org/10.1016/j.actbio.2011.06.019.Search in Google Scholar PubMed

44. Pazarlioğlu, S. Int. J. Adv. Eng. Pure Sci. 2019, 31, 295–304. https://doi.org/10.7240/jeps.512240.Search in Google Scholar

45. Asif Hussain, M., Maqbool, A., Ahmad Khalid, F., Bakhsh, N., Hussain, A., Rahman, J. U., Park, J. K., Park, T. G., Hyun, L. J., Kim, M. H. Trans. Nonferrous Metals Soc. China 2014, 24, s90–s98. (English Edition) https://doi.org/10.1016/S1003-6326(14)63293-3.Search in Google Scholar

46. Zhou, K., Dong, C., Zhang, X., Shi, L., Chen, Z., Xu, Y., Cai, H. Ceram. Int. 2015, 41, 1671–1676. https://doi.org/10.1016/j.ceramint.2014.09.108.Search in Google Scholar

47. Wang, J., Gong, X., Hai, J., Li, T. Vacuum 2018, 152, 132–137. https://doi.org/10.1016/j.vacuum.2018.03.015.Search in Google Scholar

48. Sadoun, A. M., Meselhy, A. F., Abdallah, A. W. Mater. Chem. Phys. 2021, 266, 124562. https://doi.org/10.1016/J.MATCHEMPHYS.2021.124562.Search in Google Scholar

49. Li, H., Zhao, Q., Li, B., Kang, J., Yu, Z., Li, Y., Song, X., Liang, C., Wang, H. Carbon 2016, 101, 159–167. https://doi.org/10.1016/j.carbon.2016.01.086.Search in Google Scholar

50. Shehata, F., Fathy, A., Megahed, M., Morsy, D. Egypt. Int. J. Eng. Sci. Technol. 2019, 28, 33–38. https://doi.org/10.21608/EIJEST.2019.97299.Search in Google Scholar

51. Sadoun, A., Ibrahim, A., Abdallah, A. W. J. Asian Ceram. Soc. 2020, 8, 1228–1238. https://doi.org/10.1080/21870764.2020.1841073.Search in Google Scholar

52. Karabacak, A. H., Çanakçı, A., Erdemir, F., Özkaya, S., Çelebi, M. Int. J. Mater. Res. 2020, 111, 416–423. https://doi.org/10.3139/146.111901.Search in Google Scholar

53. Ozkaya, S., Canakci, A. Powder. Technol. 2016, 297, 8–16. https://doi.org/10.1016/J.POWTEC.2016.04.004.Search in Google Scholar

54. Canakci, A., Varol, T., Cuvalci, H., Erdemir, F., Ozkaya, S. Roman J. Mater. 2015, 45, 67–72.Search in Google Scholar

55. Canakci, A., Varol, T., Cuvalci, H., Erdemir, F., Ozkaya, S., Yalcin, E. D. Micro Nano Lett. 2014, 9, 109–112. https://doi.org/10.1049/MNL.2013.0715.Search in Google Scholar

56. Dorozhkin, S. V. Calcium Orthophosphate-Based Bioceramics. Materials 2013, 6, 3840–3942. https://doi.org/10.3390/ma6093840.Search in Google Scholar PubMed PubMed Central

57. Andani, M. T., Shayesteh Moghaddam, N., Haberland, C., Dean, D., Miller, M. J., Elahinia, M. Acta Biomater. 2014, 10, 4058–4070. https://doi.org/10.1016/j.actbio.2014.06.025.Search in Google Scholar PubMed

58. Hannora, A. E., Ataya, S. J. Alloys Compd. 2016, 658, 222–233. https://doi.org/10.1016/j.jallcom.2015.10.240.Search in Google Scholar

59. Lahiri, D., Ghosh, S., Agarwal, A. Mater. Sci. Eng. C. 2012, 32, 1727–1758. https://doi.org/10.1016/j.msec.2012.05.010.Search in Google Scholar PubMed

60. Pandey, A., Patel, A. K., Ariharan, S., Kumar, V., Sharma, R. K., Kanhed, S., Nigam, V. K., Keshri, A., Agarwal, A., Balani, K. Nanomaterials 2018, 8, 363. https://doi.org/10.3390/NANO8060363.Search in Google Scholar

61. Gong, H., Cheng, Y., Nasiri-Tabrizi, B., Fahami, A. Mat. Lett. 2020, 281, 128605. https://doi.org/10.1016/J.MATLET.2020.128605.Search in Google Scholar

62. Obada, D. O., Dauda, E. T., Abifarin, J. K., Dodoo-Arhin, D., Bansod, N. D. Mater. Chem. Phys. 2020, 239, 122099. https://doi.org/10.1016/j.matchemphys.2019.122099.Search in Google Scholar

63. Jyoti, J., Kiran, A., Sandhu, M., Kumar, A., Singh, B. P., Kumar, N. J. Mech. Behav. Biomed. Mater. 2021, 117, 104376. https://doi.org/10.1016/j.jmbbm.2021.104376.Search in Google Scholar PubMed

64. Bensalem, A., Kucukosman, O. K., Raszkiewicz, J., Topkaya, F. Ceram. Int. 2021, 47, 21319–21324. https://doi.org/10.1016/j.ceramint.2021.04.139.Search in Google Scholar

65. Martínez-Gracida, N. O., Esparza-González, S. C., Castillo-Martínez, N. A., Serrano-Medina, A., Olivas-Armendariz, I., Campos-Múzquiz, L. G., Múzquiz-Ramos, E. M. Ceram. Int. 2020, 46, 20215–20225. https://doi.org/10.1016/j.ceramint.2020.05.102.Search in Google Scholar

66. Hu, X., Zhang, W., Hou, D. Ceram. Int. 2020, 46, 9810–9816. https://doi.org/10.1016/j.ceramint.2019.12.254.Search in Google Scholar

67. Varol, T., Canakci, A., Ozkaya, S., Erdemir, F. Part. Sci. Technol. 2018, 36, 312–323. https://doi.org/10.1080/02726351.2016.1248259.Search in Google Scholar

68. Szaraniec, B., Goryczka, T. J. Alloys Compd. 2017, 709, 464–472. https://doi.org/10.1016/j.jallcom.2017.03.155.Search in Google Scholar

69. Zhao, F., Zhang, L., Guo, Y., Sheng, H., Zhang, P., Zhang, Y., Li, Q., Yang, H., Mikhalovsky, S. V. Ceram. Int. 2021, 47, 3389–3400. https://doi.org/10.1016/j.ceramint.2020.09.184.Search in Google Scholar

70. Phatai, P., Futalan, C. M., Kamonwannasit, S., Khemthong, P. J. Sol. Gel Sci. Technol. 2019, 89, 764–775. https://doi.org/10.1007/s10971-018-4910-9.Search in Google Scholar

71. Ding, M., Sahebgharani, N., Musharavati, F., Jaber, F., Zalnezhad, E., Yoon, G. H. Ceram. Int. 2018, 44, 7746–7753. https://doi.org/10.1016/j.ceramint.2018.01.203.Search in Google Scholar

72. Metin, N. Hidroksiapatit Zirkonya Kompozitlerinin Üretim Ve Karakterizasyonu. PhD thesis, Yıldız Technical University, Turkey, 2012.Search in Google Scholar

73. Bulut, B. Ticari inert cam katkılı hidroksiapatit-alümina ve hidroksiapatit-zirkonya kompozitlerin üretimi ve karakterizasyonu. MSc.Thesis, Istanbul Technical University, Turkey, 2014.Search in Google Scholar

74. Elsehly, E. M., Evseev, A. P., Vorobyeva, E. A., Balakshin, Y. V., Nazarov, A. V., Stepanov, A. V., Dimitrieva, A. I., Popov, A. P., Kovalenko, A. V., Yumanov, D. S., Abo-Neima, S., Chechenin, N. G., Shemukhin, A. A. Diam. Relat. Mater. 2023, 136, 109953. https://doi.org/10.1016/J.DIAMOND.2023.109953.Search in Google Scholar

Received: 2023-03-30
Accepted: 2023-06-23
Published Online: 2024-02-14
Published in Print: 2024-03-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.4.2024 from https://www.degruyter.com/document/doi/10.1515/ijmr-2023-0120/html
Scroll to top button