Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 6, 2023

Development of superhydrophobic hybrid silica-cellulose aerogel as promising thermal insulation and sound absorption

  • Debabrata Panda ORCID logo and Krunal M. Gangawane EMAIL logo

Abstract

A cost-effective and facile synthesis method is developed for hybrid aerogels using recycled cellulose fiber concentration of 1–4 wt.% and methoxytrimethylsilane (MTMS). The developed hybrid aerogel was modified with surface hydroxyl groups to achieve superhydrophobic behavior with a contact angle as high as 163.4°. This excellent three-dimensional reticular structure with various cellulose concentrations provides a thermal conductivity of 0.039–0.041 W m−1 K−1. However, the thermal degradation of the hybrid aerogels exhibits a superior improvement with minimum weight loss. A comparatively good sound absorption coefficient of 0.392–0.504 was achieved with the inclusion of cellulose fiber concentration from 1 to 4 wt.% in comparison with silica aerogels (0.303–0.512). The experimental results also show an increase in compressive Young’s modulus of hybrid aerogels up to 96%, with an increase in cellulose concentration. This work delivers a facile approach to developing hybrid aerogels with an industrial application to replace polymer-based insulations.


Corresponding author: Krunal M. Gangawane, Department of Chemical Engineering, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Tisdell, C. Int. J. Soc. Econ. 2008, 35, 889–903. https://doi.org/10.1108/03068290810911444.Search in Google Scholar

2. Nema, P., Nema, S., Roy, P. Renew. Sustain. Energy Rev. 2012, 16, 2329–2336. https://doi.org/10.1016/j.rser.2012.01.044.Search in Google Scholar

3. Baetens, R., Jelle, B. P., Gustavsen, A. Energy Build. 2011, 43, 761–769. https://doi.org/10.1016/j.enbuild.2010.12.012.Search in Google Scholar

4. Cuce, E., Cuce, P. M., Wood, C. J., Riffat, S. B. Renew. Sustain. Energy Rev. 2014, 34, 273–299. https://doi.org/10.1016/j.rser.2014.03.017.Search in Google Scholar

5. Bronzaft, L., Hagler, L. Emerg. Environ. Technol. 2010, 2, 75–96. https://doi.org/10.1007/978-90-481-3352-9.Search in Google Scholar

6. Chen, D. R., Chang, X. H., Jiao, X. L. Aerogels in the Environment Protection; Elsevier B.V., 2014. https://doi.org/10.1016/B978-0-444-63283-8.00022-3.Search in Google Scholar

7. Seidman, M. D., Standring, R. T. Int. J. Environ. Res. Publ. Health 2010, 7, 3730–3738. https://doi.org/10.3390/ijerph7103730.Search in Google Scholar PubMed PubMed Central

8. Tzivian, L., Winkler, A., Dlugaj, M., Schikowski, T., Vossoughi, M., Fuks, K., Weinmayr, G., Hoffmann, B. Int. J. Hyg Environ. Health 2015, 218, 1–11. https://doi.org/10.1016/j.ijheh.2014.08.002.Search in Google Scholar PubMed

9. Cotana, F., Pisello, A. L., Moretti, E., Buratti, C. Build. Environ. 2014, 81, 92–102. https://doi.org/10.1016/j.buildenv.2014.06.014.Search in Google Scholar

10. Szabó, L., Soria, A., Forsström, J., Keränen, J. T., Hytönen, E. Environ. Sci. Pol. 2009, 12, 257–269. https://doi.org/10.1016/j.envsci.2009.01.011.Search in Google Scholar

11. Ikeda, Y., Park, E. Y., Okuda, N. Bioresour. Technol. 2006, 97, 1030–1035. https://doi.org/10.1016/j.biortech.2005.04.040.Search in Google Scholar PubMed

12. Cai, J., Liu, S., Feng, J., Kimura, S., Wada, M., Kuga, S., Zhang, L. Angew. Chem. 2012, 124, 2118–2121. https://doi.org/10.1002/ange.201105730.Search in Google Scholar

13. Du, A., Zhou, B., Zhang, Z., Shen, J. Materials 2013, 6, 941–968. https://doi.org/10.3390/ma6030941.Search in Google Scholar PubMed PubMed Central

14. Hüsing, N., Schubert, U. Angew. Chem. Int. Ed. 1998, 37, 22–45. https://doi.org/10.1002/(sici)1521-3773(19980202)37:1.10.1002/1521-3773(19980202)37:1/2<22::AID-ANIE22>3.3.CO;2-9Search in Google Scholar

15. Wagh, P. B., Begag, R., Pajonk, G. M., Rao, A. V., Haranath, D. Mater. Chem. Phys. 1999, 57, 214–218. https://doi.org/10.1016/S0254-0584(98)00217-X.Search in Google Scholar

16. Nguyen, S. T., Feng, J., Ng, S. K., Wong, J. P. W., Tan, V. B. C., Duong, H. M. Colloids Surf. A Physicochem. Eng. Asp. 2014, 445, 128–134. https://doi.org/10.1016/j.colsurfa.2014.01.015.Search in Google Scholar

17. Parale, V. G., Lee, K. Y., Park, H. H. J. Korean Ceram. Soc. 2017, 54, 184–199. https://doi.org/10.4191/kcers.2017.54.3.12.Search in Google Scholar

18. Parale, V. G., Han, W., Jung, H. N. R., Lee, K. Y., Park, H. H. Solid State Sci. 2018, 75, 63–70. https://doi.org/10.1016/j.solidstatesciences.2017.10.016.Search in Google Scholar

19. Asdrubali, F., Schiavoni, S., Horoshenkov, K. V. Build. Acoust. 2012, 19, 283–312. https://doi.org/10.1260/1351-010X.19.4.283.Search in Google Scholar

20. Demilecamps, A., Beauger, C., Hildenbrand, C., Rigacci, A., Budtova, T. Carbohydr. Polym. 2015, 122, 293–300. https://doi.org/10.1016/j.carbpol.2015.01.022.Search in Google Scholar

21. Demilecamps, A., Reichenauer, G., Rigacci, A., Budtova, T. Cellulose 2014, 21, 2625–2636. https://doi.org/10.1007/s10570-014-0314-3.Search in Google Scholar

22. Litschauer, M., Neouze, M. A., Haimer, E., Henniges, U., Potthast, A., Rosenau, T., Liebner, F. Cellulose 2011, 18, 143–149. https://doi.org/10.1007/s10570-010-9459-x.Search in Google Scholar

23. Wang, L., Sánchez-Soto, M. RSC Adv. 2015, 5, 31384–31391. https://doi.org/10.1039/c5ra02981c.Search in Google Scholar

24. Nguyen, S. T., Feng, J., Le, N. T., Le, A. T. T., Hoang, N., Tan, V. B. C., Duong, H. M. Ind. Eng. Chem. Res. 2013, 52, 18386–18391. https://doi.org/10.1021/ie4032567.Search in Google Scholar

25. Feng, J., Le, D., Nguyen, S. T., Nien, V. T. C., Jewell, D., Duong, H. M. Colloids Surf. A Physicochem. Eng. Asp. 2016, 506, 298–305. https://doi.org/10.1016/j.colsurfa.2016.06.052.Search in Google Scholar

26. Sai, H., Xing, L., Xiang, J., Cui, L., Jiao, J., Zhao, C., Li, Z., Li, F. J. Mater. Chem. A 2013, 1, 7963–7970. https://doi.org/10.1039/c3ta11198a.Search in Google Scholar

27. Shi, J., Lu, L., Guo, W., Zhang, J., Cao, Y. Carbohydr. Polym. 2013, 98, 282–289. https://doi.org/10.1016/j.carbpol.2013.05.082.Search in Google Scholar PubMed

28. Rao, A. V., Kalesh, R. R. Sci. Technol. Adv. Mater. 2003, 4, 509–515. https://doi.org/10.1016/j.stam.2003.12.010.Search in Google Scholar

29. Parale, V. G., Jung, H. N. R., Han, W., Lee, K. Y., Mahadik, D. B., Cho, H. H., Park, H. H. J. Alloys Compd. 2017, 727, 871–878. https://doi.org/10.1016/j.jallcom.2017.08.189.Search in Google Scholar

30. Mathis, N. High. Temp. High. Press. 2000, 32, 321–327. https://doi.org/10.1068/htwu289.Search in Google Scholar

31. Cai, J., Zhang, L. Biomacromolecules 2006, 7, 183–189. https://doi.org/10.1021/bm0505585.Search in Google Scholar PubMed

32. Zhang, W., Zhang, Y., Lu, C., Deng, Y. J. Mater. Chem. 2012, 22, 11642–11650. https://doi.org/10.1039/c2jm30688c.Search in Google Scholar

33. Cai, J., Liu, S., Feng, J., Kimura, S., Wada, M., Kuga, S., Zhang, L. Angew. Chem. Int. Ed. 2012, 51, 2076–2079. https://doi.org/10.1002/anie.201105730.Search in Google Scholar PubMed

34. Holik, H. Handbook of Paper and Board; Wiley-VCH Verlag GmbH & Co. 2006. https://doi.org/10.1002/3527608257.Search in Google Scholar

35. Rao, A. V., Kulkarni, M. M., Amalnerkar, D. P., Seth, T. J. Non-Cryst. Solids 2003, 330, 187–195. https://doi.org/10.1016/j.jnoncrysol.2003.08.048.Search in Google Scholar

36. Shafi, S., Rasheed, T., Naz, R., Majeed, S., Bilal, M. J. Sol. Gel Sci. Technol. 2021, 98, 478–486. https://doi.org/10.1007/s10971-021-05530-0.Search in Google Scholar

37. Sequeira, S., Evtuguin, D. V., Portugal, I. Polym. Compos. 2009, 30, 1275–1282. https://doi.org/10.1002/pc.20691.Search in Google Scholar

38. Jia, N., Li, S. M., Ma, M. G., Zhu, J. F., Sun, R. C. Bioresources 2011, 6, 1186–1195. https://doi.org/10.15376/biores.6.2.1186-1195.10.15376/biores.6.2.1186-1195Search in Google Scholar

Received: 2022-02-09
Accepted: 2022-06-13
Published Online: 2023-04-06
Published in Print: 2023-04-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 1.5.2024 from https://www.degruyter.com/document/doi/10.1515/ijmr-2022-0066/html
Scroll to top button