Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 3, 2014

Modification of Geometric Parameters in Outer Rotor Permanent Magnet Generators to Improve THD, Efficiency, and Cogging Torque

  • Javier de la Cruz , Juan M. Ramirez EMAIL logo and Luis Leyva

Abstract

The improvement of efficiency, total harmonic distortion (THD), and cogging torque in outer rotor permanent magnet synchronous generator (PMSG) is the main concern in this paper. The paper focuses on handling the parameters of design, i.e. the geometry of the stator, the polar arc percentage, the air gap, the skew angle in rotor poles, the pole length, and the core steel class. The modification of geometric parameters related to the stator’s inductance is analyzed. Seventy-six cases are simulated, and results provide useful information for designing this type of machines. The study is carried out in a 5 kW PMSG.

Nomenclature

δp

Polar arc percentage

δi

Pole length

δa

Air gap

δs

Outer opening of the slot

δt

Slot bottom diameter

δy

Yoke length

δl

Slot depth

δd

Teeth width

S

Conductors per phase (coil turns)

Vn

Magnitude of voltage for nth harmonic

FEA

Finite element analysis

B

Magnetic flux density

µ

Material permeability

N

Signal samples

I

Current in the coil

A

Cross-sectional area of the core

ϕ

Magnetic flux

H

Harmonic component

θp

Skew angle in poles

FFT

Fast Fourier transform

Φt

Total flux in the air gap

cp

Chord factor of winding

Cw

Winding constant

R

Reluctance of flux path

θ

Rotor position in mechanical degrees

G

Gauge of wire

Reluctance

L

Inductance

VTHD

Voltage total harmonic distortion

PMSG

Permanent magnet synchronous generator

References

1. WEQ. Energy efficient programs. Available at: http://www.Weg.Net/Green/_Files/Energy-Efficiency-Global-Directives_-_Presen tation.Pdf, August 2013.Search in Google Scholar

2. DucarIM, IonCP. Design of a PMSG for micro hydro power plants, international conference on optimization of electrical and electronic equipment (OPTIM). Brasov, Romania, 24–26 May 2012.10.1109/OPTIM.2012.6231949Search in Google Scholar

3. HeQ, BaoX, WangQ. Analyzing on structure parameters for low-speed permanent magnet synchronous generator. In: International conference on electrical machines and systems, Wuhan, China. 17–20 Oct 2008.Search in Google Scholar

4. FaizJ, EbrahimiBM, Rajabi-SebdaniM, KhanA. Optimal design of permanent magnet synchronous generator for wind energy conversion considering annual energy input and magnet volume. In: International conference on sustainable power generation and supply, Nanjing, 6–7 Apr 2009.10.1109/SUPERGEN.2009.5348100Search in Google Scholar

5. WangT, WangQ. Optimization design of a permanent magnet synchronous generator for a potential energy recovery system. IEEE Trans Energy Conversion2012;27(4):856863. DOI: 10.1109/TEC.2012.2211080.10.1109/TEC.2012.2211080Search in Google Scholar

6. TapiaJA, PyrhönenJ, PuranenJ, LindhP, NymanS. Optimal design of large permanent magnet synchronous generators. IEEE Trans Magnetics2013;49:642650.10.1109/TMAG.2012.2207907Search in Google Scholar

7. Xiang-JunZ, YongbingY, HongtaoZ, YingL, LuguangF, XuY. Modelling and control of a multi-phase permanent magnet synchronous generator and efficient hybrid 3L-converters for large direct-drive wind turbines. IET Electr Power Appl2012;6:32231.10.1049/iet-epa.2011.0145Search in Google Scholar

8. XuZ, LiR, XuD. Control of parallel multirectifiers for a direct-drive permanent-magnet wind power generator. IEEE Trans Ind Appl2013;49(4):16871696.10.1109/TIA.2013.2258312Search in Google Scholar

9. ZhangX, WangYi, LiH. Control of PMSG-based wind turbines to damp the power system oscillations. In: IEEE PEDS 2011, Singapore, 5–8 Dec 2011.Search in Google Scholar

10. DaoudAA, DessoukySS, SalemAA. Control scheme of PMSG based wind turbine for utility network connection. In: International conference on environment and electrical engineering (EEEIC), Rome, 8–11 May 2011.10.1109/EEEIC.2011.5874676Search in Google Scholar

11. RuuskanenV, ImmonenP, NergJ, PyrhönenJ. Determining electrical efficiency of permanent magnet synchronous machines with different control methods. Electrical Eng2012;94:97106.10.1007/s00202-011-0223-5Search in Google Scholar

12. Di TommasoA, MiceliR, Ricco GalluzzoG, TrapaneseM. Efficiency maximization of permanent magnet synchronous generators coupled to wind turbines, Orlando, FL. In: Power electronics specialists conference, 2007, PESC 2007, IEEE.10.1109/PESC.2007.4342175Search in Google Scholar

13. WeiJ, DengQ, ZhouBo, ShiM, LiuY. The control strategy of open-winding permanent magnet starter-generator with inverter-rectifier topology. IEEE Trans Ind Inform2013;9:983991.10.1109/TII.2012.2222038Search in Google Scholar

14. RajaeiA, MohamadianM, VarjaniAY. Vienna-rectifier-based direct torque control of PMSG for wind energy application. IEEE Trans Ind Electron2013;60:2919–2929.10.1109/TIE.2012.2227905Search in Google Scholar

15. National Electrical Manufacturers Association. NEMA Standards Publication ANSI/NEMA MG 1-2003, 17 Dec 2003.Search in Google Scholar

16. BollenMH, GuI. Signal processing of power quality disturbances. IEEE press series on power engineering. Canada: John Wiley & Sons, 2006.Search in Google Scholar

17. American National Standard (ANSI). IEEE recommended practices and requirements for harmonic control in electrical power systems. IEEE Std 519-1992. New York, USA: IEEE Press, 1993.Search in Google Scholar

18. de la Cruz-SotoJ, Leyva-MontielJL, RamirezJM. Design and development of an outer rotor permanent magnet synchronous generator of 400 W for a vertical wind turbine. In: XXIII international conference of energy saving, Guadalajara, Jal., Mexico, August 2012.Search in Google Scholar

19. KuhlmannJH. Design of electrical apparatus, 3rd ed. United States: John Wiley, Second Printing edition, 1954.Search in Google Scholar

20. de la Cruz-SotoJ, RamirezJM, Leyva-MontielJL. Voltage THD improvement for an outer rotor permanent magnet. Int J Emerging Electric Power Syst2013;14:45968. ISSN: 1553-779X.10.1515/ijeeps-2013-0072Search in Google Scholar

21. DuttaRD, SayeefSM, RahmanMF. Analysis of cogging torque and its effect on direct torque control (DTC) in a segmented interior permanent magnet machine. In: IEEE 38th annual power electronics specialists conference, Florida, 17–21 June 2007.10.1109/PESC.2007.4342420Search in Google Scholar

22. GuruBS, HizirogluHR. Electric machinery and transformers. Publication Date: July 20, 2000 ISBN-10: 0195138902, ISBN-13: 978-0195138900 | Edition: 3.Search in Google Scholar

23. ANSYS Release 13. Engineering Data Library: B–H Curves for Soft Materials, April 2013.Search in Google Scholar

24. WrightAK, WoodDH. The starting and low wind speed behaviour of a small horizontal axis wind turbine. J Wind Eng Ind Aerodynamics2004;92:126579.10.1016/j.jweia.2004.08.003Search in Google Scholar

25. Xinda Green Energy Co. Horizontal permanent magnet generator for wind turbine. Available at: http://www.xindaenergy.com/Horizontal--Permanent-magnet-generator-for-wind-turbine-p177.html, January 2014.Search in Google Scholar

26. Ginlong.Permanent magnet generator: GL-PMG-5000 specification sheet. Available at: http://www.ginlong.com/wind-turbine-pmg-pma-permanent-magnet-generator-alternator-GL-PMG-5k.htm, January 2014.Search in Google Scholar

Published Online: 2014-9-3
Published in Print: 2014-10-1

©2014 by De Gruyter

Downloaded on 1.6.2024 from https://www.degruyter.com/document/doi/10.1515/ijeeps-2014-0062/html
Scroll to top button