Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 2, 2015

Crystal structure of cleaved vaspin (serpinA12)

  • Jan Pippel , E. Bartholomeus Kuettner , David Ulbricht , Jan Daberger , Stephan Schultz , John T. Heiker EMAIL logo and Norbert Sträter EMAIL logo
From the journal Biological Chemistry

Abstract

The adipokine vaspin (serpinA12) is mainly expressed in white adipose tissue and exhibits various beneficial effects on obesity-related processes. Kallikrein 7 is the only known target protease of vaspin and is inhibited by the classical serpin inhibitory mechanism involving a cleavage of the reactive center loop between P1 (M378) and P1′ (E379). Here, we present the X-ray structure of vaspin, cleaved between M378 and E379. We provide a comprehensive analysis of differences between the uncleaved and cleaved forms in the shutter, breach, and hinge regions with relation to common molecular features underlying the serpin inhibitory mode. Furthermore, we point out differences towards other serpins and provide novel data underlining the remarkable stability of vaspin. We speculate that the previously reported FKGx1Wx2x3 motif in the breach region may play a decisive role in determining the reactive center loop configuration in the native vaspin state and might contribute to the high thermostability of vaspin. Thus, this structure may provide a basis for future mutational studies.


Corresponding authors: John T. Heiker, Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Brüderstr. 34, D-04103 Leipzig, Germany, e-mail: ; and Norbert Sträter, Center for Biotechnology and Biomedicine, Institute of Bioanalytical Chemistry, University of Leipzig, Deutscher Platz 5, D-04103 Leipzig, Germany, e-mail:

Acknowledgments

The vaspin expression plasmid was kindly provided by Dr. J. Wada (Department of Medicine and Clinical Science Okayama University Graduate School of Medicine, Okayama, Japan). We thank Susanne Moschuetz and Antje Keim for help with purification and crystallization. This work was supported by the European Union and the Free State of Saxony (J.T.H.) and by the Deutsche Forschungsgemeinschaft SFB1052 ‘Obesity Mechanisms’ (C4 N.S., C7 J.T.H.). The authors thank the Joint Berlin MX-Laboratory at BESSY II, Berlin, Germany, for beam time and assistance during synchrotron data collection as well as the Helmholtz Zentrum Berlin for travelling support.

References

Adams, P.D., Afonine, P.V., Bunkóczi, G., Chen, V.B., Davis, I.W., Echols, N., Headd, J.J., Hung, L.-W., Kapral, G.J., Grosse-Kunstleve, R.W., et al. (2010). PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. Sect. D Biol. Crystallogr. 66, 213–221.10.1107/S0907444909052925Search in Google Scholar

Afonine, P.V., Moriarty, N.W., Mustyakimov, M., Sobolev, O.V., Terwilliger, T.C., Turk, D., Urzhumtsev, A., and Adams, P.D. (2015). FEM: feature-enhanced map. Acta Crystallogr. Sect. D Biol. Crystallogr. 71, 646–666.10.1107/S1399004714028132Search in Google Scholar

Baumann, U., Huber, R., Bode, W., Grosse, D., Lesjak, M., and Laurell, C.B. (1991). Crystal structure of cleaved human α1-antichymotrypsin at 2.7 Å resolution and its comparison with other serpins. J. Mol. Biol. 218, 595–606.10.1016/0022-2836(91)90704-ASearch in Google Scholar

Belorgey, D., Hägglöf, P., Karlsson-Li, S., and Lomas, D.A. (2007). Protein misfolding and the serpinopathies. Prion 1, 15–20.10.4161/pri.1.1.3974Search in Google Scholar PubMed PubMed Central

Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., and Bourne, P.E. (2000). The protein data bank. Nucleic. Acids Res. 28, 235–242.10.1093/nar/28.1.235Search in Google Scholar PubMed PubMed Central

Blouse, G.E., Perron, M.J., Kvassman, J.-O., Yunus, S., Thompson, J.H., Betts, R.L., Lutter, L.C., and Shore, J.D. (2003). Mutation of the highly conserved tryptophan in the serpin breach region alters the inhibitory mechanism of plasminogen activator inhibitor-1. Biochemistry 42, 12260–12272.10.1021/bi034737nSearch in Google Scholar PubMed

Blüher, M. (2012). Vaspin in obesity and diabetes: pathophysiological and clinical significance. Endocrine 41, 176–182.10.1007/s12020-011-9572-0Search in Google Scholar PubMed

Caso, R., Lane, D.A., Thompson, E.A., Olds, R.J., Thein, S.L., Panico, M., Blench, I., Morris, H.R., Freyssinet, J.M., and Aiach, M. (1991). Antithrombin Vicenza, Ala 384 to Pro (GCA to CCA) mutation, transforming the inhibitor into a substrate. Br. J. Haematol. 77, 87–92.10.1111/j.1365-2141.1991.tb07953.xSearch in Google Scholar PubMed

Chang, W.S., Whisstock, J., Hopkins, P.C., Lesk, A.M., Carrell, R.W., and Wardell, M.R. (1997). Importance of the release of strand 1C to the polymerization mechanism of inhibitory serpins. Protein Sci. 6, 89–98.10.1002/pro.5560060110Search in Google Scholar PubMed PubMed Central

Chen, V.B., Arendall, W.B., Headd, J.J., Keedy, D.A., Immormino, R.M., Kapral, G.J., Murray, L.W., Richardson, J.S., and Richardson, D.C. (2010). MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. Sect. D Biol. Crystallogr. 66, 12–21.10.1107/S0907444909042073Search in Google Scholar PubMed PubMed Central

Collaborative Computational Project, Number 4 (1994). The CCP4 suite: programs for protein crystallography. Acta Crystallogr. Sect. D Biol. Crystallogr. 50, 760–763.Search in Google Scholar

Davis, R.L., Shrimpton, A.E., Holohan, P.D., Bradshaw, C., Feiglin, D., Collins, G.H., Sonderegger, P., Kinter, J., Becker, L.M., Lacbawan, F., et al. (1999). Familial dementia caused by polymerization of mutant neuroserpin. Nature 401, 376–379.10.1038/43894Search in Google Scholar PubMed

Debela, M., Magdolen, V., Schechter, N., Valachova, M., Lottspeich, F., Craik, C.S., Choe, Y., Bode, W., and Goettig, P. (2006). Specificity profiling of seven human tissue kallikreins reveals individual subsite preferences. J. Biol. Chem. 281, 25678–25688.10.1074/jbc.M602372200Search in Google Scholar PubMed

Dementiev, A., Dobó, J., and Gettins, P.G.W. (2006). Active site distortion is sufficient for proteinase inhibition by serpins: structure of the covalent complex of α1-proteinase inhibitor with porcine pancreatic elastase. J. Biol. Chem. 281, 3452–3457.10.1074/jbc.M510564200Search in Google Scholar PubMed

Dewilde, M., Strelkov, S.V., Rabijns, A., and Declerck, P.J. (2009). High quality structure of cleaved PAI-1-stab. J. Struct. Biol. 165, 126–132.10.1016/j.jsb.2008.11.001Search in Google Scholar PubMed

Eissa, A. and Diamandis, E.P. (2008). Human tissue kallikreins as promiscuous modulators of homeostatic skin barrier functions. Biol. Chem. 389, 669–680.10.1515/BC.2008.079Search in Google Scholar PubMed

Ellisdon, A.M., Zhang, Q., Henstridge, M.A., Johnson, T.K., Warr, C.G., Law, R.H., and Whisstock, J.C. (2014). High resolution structure of cleaved Serpin 42 Da from Drosophila melanogaster. BMC Struct. Biol. 14, 14.10.1186/1472-6807-14-14Search in Google Scholar PubMed PubMed Central

Emsley, P., Lohkamp, B., Scott, W.G., and Cowtan, K. (2010). Features and development of Coot. Acta Crystallogr. Sect. D Biol. Crystallogr. 66, 486–501.10.1107/S0907444910007493Search in Google Scholar PubMed PubMed Central

Engh, R., Löbermann, H., Schneider, M., Wiegand, G., Huber, R., and Laurell, C.B. (1989). The S variant of human α1-antitrypsin, structure and implications for function and metabolism. Protein Eng. 2, 407–415.10.1093/protein/2.6.407Search in Google Scholar PubMed

Eriksson, S., Carlson, J., and Velez, R. (1986). Risk of cirrhosis and primary liver cancer in α1-antitrypsin deficiency. N. Engl. J. Med. 314, 736–739.10.1056/NEJM198603203141202Search in Google Scholar PubMed

Evans, P.R. and Murshudov, G.N. (2013). How good are my data and what is the resolution? Acta Crystallogr. Sect. D Biol. Crystallogr. 69, 1204–1214.10.1107/S0907444913000061Search in Google Scholar PubMed PubMed Central

Gettins, P.G.W. (2002). Serpin structure, mechanism, and function. Chem. Rev. 102, 4751–4804.10.1021/cr010170+Search in Google Scholar

Gils, A., Knockaert, I., and Declerck, P.J. (1996). Substrate behavior of plasminogen activator inhibitor-1 is not associated with a lack of insertion of the reactive site loop. Biochemistry 35, 7474–7481.10.1021/bi960079dSearch in Google Scholar

Gooptu, B., Hazes, B., Chang, W.S., Dafforn, T.R., Carrell, R.W., Read, R.J., and Lomas, D.A. (2000). Inactive conformation of the serpin α1-antichymotrypsin indicates two-stage insertion of the reactive loop: implications for inhibitory function and conformational disease. Proc. Natl. Acad. Sci. USA 97, 67–72.10.1073/pnas.97.1.67Search in Google Scholar

Goujon, M., McWilliam, H., Li, W., Valentin, F., Squizzato, S., Paern, J., and Lopez, R. (2010). A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic. Acids Res. 38, W695–W699.10.1093/nar/gkq313Search in Google Scholar

Hansen, M., Busse, M.N., and Andreasen, P.A. (2001). Importance of the amino-acid composition of the shutter region of plasminogen activator inhibitor-1 for its transitions to latent and substrate forms. Eur. J. Biochem. 268, 6274–6283.10.1046/j.0014-2956.2001.02582.xSearch in Google Scholar

Harrop, S.J., Jankova, L., Coles, M., Jardine, D., Whittaker, J.S., Gould, A.R., Meister, A., King, G.C., Mabbutt, B.C., and Curmi, P.M. (1999). The crystal structure of plasminogen activator inhibitor 2 at 2.0 Å resolution: implications for serpin function. Structure 7, 43–54.10.1016/S0969-2126(99)80008-2Search in Google Scholar

Heiker, J.T. (2014). Vaspin (serpinA12) in obesity, insulin resistance, and inflammation. J. Pept. Sci. 20, 299–306.10.1002/psc.2621Search in Google Scholar PubMed

Heiker, J.T., Klöting, N., Kovacs, P., Kuettner, E.B., Sträter, N., Schultz, S., Kern, M., Stumvoll, M., Blüher, M., and Beck-Sickinger, A.G. (2013). Vaspin inhibits kallikrein 7 by serpin mechanism. Cell Mol. Life Sci. 70, 2569–2583.10.1007/s00018-013-1258-8Search in Google Scholar PubMed PubMed Central

Hida, K., Wada, J., Eguchi, J., Zhang, H., Baba, M., Seida, A., Hashimoto, I., Okada, T., Yasuhara, A., Nakatsuka, A., et al. (2005). Visceral adipose tissue-derived serine protease inhibitor: a unique insulin-sensitizing adipocytokine in obesity. Proc. Natl. Acad. Sci. USA 102, 10610–10615.10.1073/pnas.0504703102Search in Google Scholar PubMed PubMed Central

Holm, L. and Rosenström, P. (2010). Dali server: conservation mapping in 3D. Nucleic Acids Res. 38, W545–W549.10.1093/nar/gkq366Search in Google Scholar PubMed PubMed Central

Hopkins, P.C., Carrell, R.W., and Stone, S.R. (1993). Effects of mutations in the hinge region of serpins. Biochemistry 32, 7650–7657.10.1021/bi00081a008Search in Google Scholar

Huang, X., Yan, Y., Tu, Y., Gatti, J., Broze, G.J.J., Zhou, A., and Olson, S.T. (2012). Structural Basis for catalytic activation of protein Z-dependent protease inhibitor (Zpi) by protein Z. Blood 120, 1726.10.1182/blood-2012-03-419598Search in Google Scholar

Huber, R. and Carrell, R.W. (1989). Implications of the three-dimensional structure of α1-antitrypsin for structure and function of serpins. Biochemistry 28, 8951–8966.10.1021/bi00449a001Search in Google Scholar

Huntington, J.A., Pannu, N.S., Hazes, B., Read, R.J., Lomas, D.A., and Carrell, R.W. (1999). A 2.6 Å structure of a serpin polymer and implications for conformational disease. J. Mol. Biol. 293, 449–455.10.1006/jmbi.1999.3184Search in Google Scholar

Huntington, J.A., Read, R.J., and Carrell, R.W. (2000). Structure of a serpin-protease complex shows inhibition by deformation. Nature 407, 923–926.10.1038/35038119Search in Google Scholar

Huntington, J.A., Kjellberg, M., and Stenflo, J. (2003). Crystal structure of protein C inhibitor provides insights into hormone binding and heparin activation. Structure 11, 205–215.10.1016/S0969-2126(02)00944-9Search in Google Scholar

Jallat, S., Carvallo, D., Tessier, L.H., Roecklin, D., Roitsch, C., Ogushi, F., Crystal, R.G., and Courtney, M. (1986). Altered specificities of genetically engineered α1 antitrypsin variants. Protein Eng. 1, 29–35.10.1093/protein/1.1.29Search in Google Scholar PubMed

Jankova, L., Harrop, S.J., Saunders, D.N., Andrews, J.L., Bertram, K.C., Gould, A.R., Baker, M.S., and Curmi, P.M. (2001). Crystal structure of the complex of plasminogen activator inhibitor 2 with a peptide mimicking the reactive center loop. J. Biol. Chem. 276, 43374–43382.10.1074/jbc.M103021200Search in Google Scholar PubMed

Jensen, J.K. and Gettins, P.G.W. (2008). High-resolution structure of the stable plasminogen activator inhibitor type-1 variant 14-1B in its proteinase-cleaved form: a new tool for detailed interaction studies and modeling. Protein Sci. 17, 1844–1849.10.1110/ps.036707.108Search in Google Scholar PubMed PubMed Central

Jensen, J.K., Thompson, L.C., Bucci, J.C., Nissen, P., Gettins, P.G.W., Peterson, C.B., Andreasen, P.A., and Morth, J.P. (2011). Crystal structure of plasminogen activator inhibitor-1 in an active conformation with normal thermodynamic stability. J. Biol. Chem. 286, 29709–29717.10.1074/jbc.M111.236554Search in Google Scholar PubMed PubMed Central

Jeppsson, J.-O. (1976). Amino acid substitution Glu→Lys in α1-antitrypsin PiZ. FEBS Lett. 65, 195–197.10.1016/0014-5793(76)80478-4Search in Google Scholar

Kabsch, W. (2010). XDS. Acta Crystallogr. Sect. D Biol. Crystallogr. 66, 125–132.10.1107/S0907444909047337Search in Google Scholar

Kabsch, W. and Sander, C. (1983). Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637.10.1002/bip.360221211Search in Google Scholar

Khan, M.S., Singh, P., Azhar, A., Naseem, A., Rashid, Q., Kabir, M.A., and Jairajpuri, M.A. (2011). Serpin inhibition mechanism: a delicate balance between native metastable state and polymerization. J. Amino Acids 2011, 606–797.10.4061/2011/606797Search in Google Scholar

Kirkegaard, T., Jensen, S., Schousboe, S.L., Petersen, H.H., Egelund, R., Andreasen, P.A., and Rodenburg, K.W. (1999). Engineering of conformations of plasminogen activator inhibitor-1. A crucial role of β-strand 5A residues in the transition of active form to latent and substrate forms. Eur. J. Biochem. 263, 577–586.10.1046/j.1432-1327.1999.00545.xSearch in Google Scholar

Klöting, N., Berndt, J., Kralisch, S., Kovacs, P., Fasshauer, M., Schön, M.R., Stumvoll, M., and Blüher, M. (2006). Vaspin gene expression in human adipose tissue: association with obesity and type 2 diabetes. Biochem. Biophys. Res. Commun. 339, 430–436.10.1016/j.bbrc.2005.11.039Search in Google Scholar

Lee, C., Park, S.-H., Lee, M.-Y., and Yu, M.-H. (2000). Regulation of protein function by native metastability. Proc. Natl. Acad. Sci. USA 97, 7727–7731.10.1073/pnas.97.14.7727Search in Google Scholar

Li, W. and Huntington, J.A. (2008). The heparin binding site of protein C inhibitor is protease-dependent. J. Biol. Chem. 283, 36039–36045.10.1074/jbc.M805974200Search in Google Scholar

Li, J., Wang, Z., Canagarajah, B., Jiang, H., Kanost, M., and Goldsmith, E.J. (1999). The structure of active serpin 1K from Manduca sexta. Structure 7, 103–109.10.1016/S0969-2126(99)80013-6Search in Google Scholar

Li, W., Adams, T.E., Kjellberg, M., Stenflo, J., and Huntington, J.A. (2007). Structure of native protein C inhibitor provides insight into its multiple functions. J. Biol. Chem. 282, 13759–13768.10.1074/jbc.M701074200Search in Google Scholar PubMed

Lomas, D.A. and Carrell, R.W. (2002). Serpinopathies and the conformational dementias. Nat. Rev. Genet. 3, 759–768.10.1038/nrg907Search in Google Scholar PubMed

Lomas, D.A., Evans, D.L., Finch, J.T., and Carrell, R.W. (1992). The mechanism of Z α1-antitrypsin accumulation in the liver. Nature 357, 605–607.10.1038/357605a0Search in Google Scholar PubMed

Lomas, D.A., Elliott, P.R., Chang, W.S., Wardell, M.R., and Carrell, R.W. (1995). Preparation and characterization of latent α1-antitrypsin. J. Biol. Chem. 270, 5282–5288.10.1074/jbc.270.10.5282Search in Google Scholar PubMed

Lukacs, C.M., Rubin, H., and Christianson, D.W. (1998a). Engineering an anion-binding cavity in antichymotrypsin modulates the "spring-loaded" serpin-protease interaction. Biochemistry 37, 3297–3304.10.1021/bi972359eSearch in Google Scholar PubMed

Lukacs, C.M., Rubin, H., and Christianson, D.W. (1998b). Engineering an anion-binding cavity in antichymotrypsin modulates the "spring-loaded" serpin-protease interaction. Biochemistry 37, 3297–3304.10.1021/bi972359eSearch in Google Scholar

McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., and Read, R.J. (2007). Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674.10.1107/S0021889807021206Search in Google Scholar PubMed PubMed Central

Millar, D.S., Wacey, A.I., Ribando, J., Melissari, E., Laursen, B., Woods, P., Kakkar, V.V., and Cooper, D.N. (1994). Three novel missense mutations in the antithrombin III (AT3) gene causing recurrent venous thrombosis. Hum. Genet. 94, 509–512.10.1007/BF00211016Search in Google Scholar PubMed

Molho-Sabatier, P., Aiach, M., Gaillard, I., Fiessinger, J.N., Fischer, A.M., Chadeuf, G., and Clauser, E. (1989). Molecular characterization of antithrombin III (ATIII) variants using polymerase chain reaction. Identification of the ATIII Charleville as an Ala 384 Pro mutation. J. Clin. Invest. 84, 1236–1242.10.1172/JCI114290Search in Google Scholar PubMed PubMed Central

Mottonen, J., Strand, A., Symersky, J., Sweet, R.M., Danley, D.E., Geoghegan, K.F., Gerard, R.D., and Goldsmith, E.J. (1992). Structural basis of latency in plasminogen activator inhibitor-1. Nature 355, 270–273.10.1038/355270a0Search in Google Scholar PubMed

Murshudov, G.N., Vagin, A.A., and Dodson, E.J. (1997). Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. Sect. D Biol. Crystallogr. 53, 240–255.10.1107/S0907444996012255Search in Google Scholar PubMed

Murshudov, G.N., Skubák, P., Lebedev, A.A., Pannu, N.S., Steiner, R.A., Nicholls, R.A., Winn, M.D., Long, F., and Vagin, A.A. (2011). REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. Sect. D Biol. Crystallogr. 67, 355–367.10.1107/S0907444911001314Search in Google Scholar

Na, Y.-R. and Im, H. (2007). Specific interactions of serpins in their native forms attenuate their conformational transitions. Protein Sci. 16, 1659–1666.10.1110/ps.072838107Search in Google Scholar

Nakatsuka, A., Wada, J., Iseda, I., Teshigawara, S., Higashio, K., Murakami, K., Kanzaki, M., Inoue, K., Terami, T., Katayama, A., et al. (2012). Vaspin is an adipokine ameliorating ER stress in obesity as a ligand for cell-surface GRP78/MTJ-1 complex. Diabetes 61, 2823–2832.10.2337/db12-0232Search in Google Scholar

Oliveira, J.R., Bertolin, T.C., Andrade, D., Oliveira, L.C.G., Kondo, M.Y., Santos, J.A.N., Blaber, M., Juliano, L., Severino, B., Caliendo, G., et al. (2015). Specificity studies on Kallikrein-related peptidase 7 (KLK7) and effects of osmolytes and glycosaminoglycans on its peptidase activity. Biochim. Biophys. Acta 1854, 73–83.10.1016/j.bbapap.2014.10.018Search in Google Scholar

Painter, J. and Merritt, E.A. (2006a). Optimal description of a protein structure in terms of multiple groups undergoing TLS motion. Acta Crystallogr. Sect. D Biol. Crystallogr. 62, 439–450.10.1107/S0907444906005270Search in Google Scholar

Painter, J. and Merritt, E.A. (2006b). TLSMD web server for the generation of multi-group TLS models. J. Appl. Crystallogr. 39, 109–111.10.1107/S0021889805038987Search in Google Scholar

Patston, P.A., Gettins, P., Beechem, J., and Schapira, M. (1991). Mechanism of serpin action. Evidence that C1 inhibitor functions as a suicide substrate. Biochemistry 30, 8876–8882.10.1021/bi00100a022Search in Google Scholar

Pearce, M.C., Cabrita, L.D., Ellisdon, A.M., and Bottomley, S.P. (2007). The loss of tryptophan 194 in antichymotrypsin lowers the kinetic barrier to misfolding. FEBS J. 274, 3622–3632.10.1111/j.1742-4658.2007.05897.xSearch in Google Scholar

Pearce, M.C., Morton, C.J., Feil, S.C., Hansen, G., Adams, J.J., Parker, M.W., and Bottomley, S.P. (2008). Preventing serpin aggregation: the molecular mechanism of citrate action upon antitrypsin unfolding. Protein Sci. 17, 2127–2133.10.1110/ps.037234.108Search in Google Scholar

Perry, D.J., Harper, P.L., Fairham, S., Daly, M., and Carrell, R.W. (1989). Antithrombin Cambridge, 384 Ala to Pro: a new variant identified using the polymerase chain reaction. FEBS Lett. 254, 174–176.10.1016/0014-5793(89)81033-6Search in Google Scholar

Ricagno, S., Caccia, S., Sorrentino, G., Antonini, G., and Bolognesi, M. (2009). Human neuroserpin: structure and time-dependent inhibition. J. Mol. Biol. 388, 109–121.10.1016/j.jmb.2009.02.056Search in Google Scholar

Robert, X. and Gouet, P. (2014). Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 42, W320–W324.10.1093/nar/gku316Search in Google Scholar

Ryu, S.-E., Choi, H.-J., Kwon, K.-S., Lee, K.N., and Yu, M.-H. (1996). The native strains in the hydrophobic core and flexible reactive loop of a serine protease inhibitor. Crystal structure of an uncleaved α1-antitrypsin at 2.7 Å. Structure 4, 1181–1192.10.1016/S0969-2126(96)00126-8Search in Google Scholar

Saalbach, A., Vester, K., Rall, K., Tremel, J., Anderegg, U., Beck-Sickinger, A.G., Blüher, M., and Simon, J.C. (2012). Vaspin – a link of obesity and psoriasis? Exp. Dermatol. 21, 309–312.Search in Google Scholar

Saunders, D.N., Jankova, L., Harrop, S.J., Curmi, P.M., Gould, A.R., Ranson, M., and Baker, M.S. (2001). Interaction between the P14 residue and strand 2 of β-sheet B is critical for reactive center loop insertion in plasminogen activator inhibitor-2. J. Biol. Chem. 276, 43383–43389.10.1074/jbc.M103123200Search in Google Scholar

Schechter, I. and Berger, A. (1967). On the size of the active site in proteases. I. Papain. Biochem. Biophys. Res. Commun. 27, 157–162.10.1016/S0006-291X(67)80055-XSearch in Google Scholar

Schreuder, H.A., Boer, B. de, Dijkema, R., Mulders, J., Theunissen, H.J., Grootenhuis, P.D., and Hol, W.G. (1994). The intact and cleaved human antithrombin III complex as a model for serpin-proteinase interactions. Nat. Struct. Biol. 1, 48–54.10.1038/nsb0194-48Search in Google Scholar

Schultz, S., Saalbach, A., Heiker, J.T., Meier, R., Zellmann, T., Simon, J.C., and Beck-Sickinger, A.G. (2013). Proteolytic activation of prochemerin by kallikrein 7 breaks an ionic linkage and results in C-terminal rearrangement. Biochem. J. 452, 271–280.10.1042/BJ20121880Search in Google Scholar

Seyama, K., Nukiwa, T., Takabe, K., Takahashi, H., Miyake, K., and Kira, S. (1991). Siiyama (serine 53 (TCC) to phenylalanine 53 (TTC)). A new α1-antitrypsin-deficient variant with mutation on a predicted conserved residue of the serpin backbone. J. Biol. Chem. 266, 12627–12632.10.1016/S0021-9258(18)98945-3Search in Google Scholar

Sharp, A.M., Stein, P.E., Pannu, N.S., Carrell, R.W., Berkenpas, M.B., Ginsburg, D., Lawrence, D.A., and Read, R.J. (1999). The active conformation of plasminogen activator inhibitor 1, a target for drugs to control fibrinolysis and cell adhesion. Structure 7, 111–118.10.1016/S0969-2126(99)80018-5Search in Google Scholar

Sievers, F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Söding, J., et al. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539.10.1038/msb.2011.75Search in Google Scholar PubMed PubMed Central

Stein, P.E. and Carrell, R.W. (1995). What do dysfunctional serpins tell us about molecular mobility and disease? Nat. Struct. Biol. 2, 96–113.10.1038/nsb0295-96Search in Google Scholar PubMed

Stoller, J.K. and Aboussouan, L.S. (2012). A review of α1-antitrypsin deficiency. Am. J. Respir. Crit. Care Med. 185, 246–259.10.1164/rccm.201108-1428CISearch in Google Scholar PubMed

Stout, T.J., Graham, H., Buckley, D.I., and Matthews, D.J. (2000). Structures of active and latent PAI-1. A possible stabilizing role for chloride ions. Biochemistry 39, 8460–8469.10.1021/bi000290wSearch in Google Scholar PubMed

Takao, M., Benson, M.D., Murrell, J.R., Yazaki, M., Piccardo, P., Unverzagt, F.W., Davis, R.L., Holohan, P.D., Lawrence, D.A., Richardson, R., et al. (2000). Neuroserpin mutation S52R causes neuroserpin accumulation in neurons and is associated with progressive myoclonus epilepsy. J. Neuropathol. Exp. Neurol. 59, 1070–1086.10.1093/jnen/59.12.1070Search in Google Scholar PubMed

Takehara, S., Onda, M., Zhang, J., Nishiyama, M., Yang, X., Mikami, B., and Lomas, D.A. (2009). The 2.1-Å crystal structure of native neuroserpin reveals unique structural elements that contribute to conformational instability. J. Mol. Biol. 388, 11–20.10.1016/j.jmb.2009.03.007Search in Google Scholar PubMed

Touw, W.G., Baakman, C., Black, J., te Beek, Tim A H, Krieger, E., Joosten, R.P., and Vriend, G. (2015). A series of PDB-related databanks for everyday needs. Nucleic Acids Res. 43, D364–D368.10.1093/nar/gku1028Search in Google Scholar PubMed PubMed Central

Ulbricht, D., Pippel, J., Schultz, S., Meier, R., Sträter, N., and Heiker, J.T. (2015). A unique serpin P1’ glutamate and a conserved β-sheet C arginine are key residues for activity, protease recognition and stability of serpinA12 (vaspin). Biochem. J. 470, 357–367.10.1042/BJ20150643Search in Google Scholar PubMed

Wardell, M.R., Chang, W.S., Bruce, D., Skinner, R., Lesk, A.M., and Carrell, R.W. (1997). Preparative induction and characterization of L-antithrombin: a structural homologue of latent plasminogen activator inhibitor-1. Biochemistry 36, 13133–13142.10.1021/bi970664uSearch in Google Scholar PubMed

Whisstock, J.C., Skinner, R., Carrell, R.W., and Lesk, A.M. (2000). Conformational changes in serpins: I. The native and cleaved conformations of α1-antitrypsin. J. Mol. Biol. 295, 651–665.10.1006/jmbi.1999.3375Search in Google Scholar PubMed

Yamasaki, M., Li, W., Johnson, D.J.D., and Huntington, J.A. (2008). Crystal structure of a stable dimer reveals the molecular basis of serpin polymerization. Nature 455, 1255–1258.10.1038/nature07394Search in Google Scholar PubMed

Yamasaki, M., Sendall, T.J., Pearce, M.C., Whisstock, J.C., and Huntington, J.A. (2011). Molecular basis of α1-antitrypsin deficiency revealed by the structure of a domain-swapped trimer. EMBO Rep. 12, 1011–1017.10.1038/embor.2011.171Search in Google Scholar PubMed PubMed Central

Youn, B.-S., Klöting, N., Kratzsch, J., Lee, N., Park, J.W., Song, E.-S., Ruschke, K., Oberbach, A., Fasshauer, M., Stumvoll, M., et al. (2008). Serum vaspin concentrations in human obesity and type 2 diabetes. Diabetes 57, 372–377.10.2337/db07-1045Search in Google Scholar PubMed

Zhou, A., Faint, R., Charlton, P., Dafforn, T.R., Carrell, R.W., and Lomas, D.A. (2001). Polymerization of plasminogen activator inhibitor-1. J. Biol. Chem. 276, 9115–9122.10.1074/jbc.M010631200Search in Google Scholar PubMed

Zhou, A., Stein, P.E., Huntington, J.A., and Carrell, R.W. (2003). Serpin polymerization is prevented by a hydrogen bond network that is centered on his-334 and stabilized by glycerol. J. Biol. Chem. 278, 15116–15122.10.1074/jbc.M211663200Search in Google Scholar PubMed


Supplemental Material:

The online version of this article (DOI: 10.1515/hsz-2015-0229) offers supplementary material, available to authorized users.


Received: 2015-8-21
Accepted: 2015-10-28
Published Online: 2015-11-2
Published in Print: 2016-1-1

©2016 by De Gruyter

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2015-0229/html
Scroll to top button