Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 12, 2019

Effect of structure of technical lignin on the electrochemical performance of lignin-derived porous carbon from K2CO3 activation

  • Yuebin Xi , Dongjie Yang EMAIL logo , Yuanyuan Wang , JinHao Huang , Mengzhen Yan , Conghua Yi , Yong Qian and Xueqing Qiu EMAIL logo
From the journal Holzforschung

Abstract

Owing to its high aromaticity and carbon content, technical lignin as the by-product of chemical pulping and bio-refining industry can be converted into lignin-derived porous carbon (LPC) materials after activation, which is a promising strategy for high-value utilization. In particular, LPC with a higher surface area and graphitization will have a broad prospect as the electrode material for lithium-ion batteries (LIBs). However, the structure of technical lignin varies greatly due to its different industrial processes and botany sources, which remarkably affects the activation process and electrochemical properties of LPC. Herein, we study the effect of oxygen/carbon (O/C) ratio and molecular weight on the structure of LPC by exploring the effect of four kinds of technical lignin on K2CO3 activation. High O/C ratio can promote LPC to maintain a high specific surface area (SSA). High molecular weight and low O/C ratio were beneficial to increase the graphitization degree and keep the porous structure of LPC. The electrochemical performance evaluation showed that high graphitization and stable porous structure were beneficial for lithium-ion storage. Therefore, LPC from enzymatic hydrolysis lignin (EHL) had long cycle performance (490 mAh · g−1 at a current density of 400 mA · g−1) and excellent rate performance compared to lignin from chemical pulping.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors would like to acknowledge the financial support of the National Key Research and Development Program of China (2018YFB1501503), National Natural Science Foundation of China (funder Id: http://dx.doi.org/10.13039/501100001809) (21878114 and 21690083) and Natural Science Foundation of Guangdong Province of China (2018B030311052 and 2017B090903003).

  3. Employment or leadership: None declared.

  4. Honorarium: None declared.

References

Babeł, K., Jurewicz, K. (2008) KOH activated lignin based nanostructured carbon exhibiting high hydrogen electrosorption. Carbon 46:1948–1956.10.1016/j.carbon.2008.08.005Search in Google Scholar

Bian, H., Chen, L., Gleisner, R., Dai, H., Zhu, J. (2017) Producing wood-based nanomaterials by rapid fractionation of wood at 80 °C using a recyclable acid hydrotrope. Green Chem. 19:3370–3379.10.1039/C7GC00669ASearch in Google Scholar

Braun, J.L., Holtman, K.M., Kadla, J.F. (2005) Lignin-based carbon fibers: oxidative thermostabilization of kraft lignin. Carbon 43:385–394.10.1016/j.carbon.2004.09.027Search in Google Scholar

Chang, Z.Z., Yu, B.J., Wang, C.Y. (2015) Influence of H2 reduction on lignin-based hard carbon performance in lithium ion batteries. Electrochim. Acta 176:1352–1357.10.1016/j.electacta.2015.07.076Search in Google Scholar

Chen, Z., Wang, X., Xue, B., Wei, Q., Hu, L., Wang, Z., Yang, X., Qiu, J. (2019) Self-templating synthesis of 3D hollow tubular porous carbon derived from straw cellulose waste with excellent performance for supercapacitors. ChemSusChem 12:1390–1440.10.1002/cssc.201802945Search in Google Scholar PubMed

Chen, L., Dou, J., Ma, Q., Li, N., Wu, R., Bian, H., Yelle, D.J., Vuorinen, T., Fu, S., Pan, X., Zhu, J. (2017) Rapid and near-complete dissolution of wood lignin at ≤80°C by a recyclable acid hydrotrope. Sci. Adv. 3: e1701735.10.1126/sciadv.1701735Search in Google Scholar PubMed PubMed Central

Chew, S.Y., Ng, S.H., Wang, J., Novák, P., Krumeich, F., Chou, S.L., Chen, J., Liu, H.K. (2009) Flexible free-standing carbon nanotube films for model lithium-ion batteries. Carbon 47:2976–2983.10.1016/j.carbon.2009.06.045Search in Google Scholar

De Wild, P., Van der Laan, R., Kloekhorst, A., Heeres, E. (2009) Lignin valorisation for chemicals and (transportation) fuels via (catalytic) pyrolysis and hydrodeoxygenation. Environ. Prog. Sustain. 28:461–469.10.1002/ep.10391Search in Google Scholar

del Río, J.C., Gutiérrez, A., Hernando, M., Landín, P., Romero, J., Martínez, Á.T. (2005) Determining the influence of eucalypt lignin composition in paper pulp yield using Py-GC/MS. J. Anal. Appl. Pyrol. 74:110–115.10.1016/j.jaap.2004.10.010Search in Google Scholar

Deng, J., Xiong, T., Wang, H., Zheng, A., Wang, Y. (2016) Effects of cellulose, hemicellulose, and lignin on the structure and morphology of porous carbons. ACS Sustain. Chem. Eng. 4:3750–3756.10.1021/acssuschemeng.6b00388Search in Google Scholar

Diehl, B.G., Brown, N.R., Frantz, C.W., Lumadue, M.R., Cannon, F. (2013) Effects of pyrolysis temperature on the chemical composition of refined softwood and hardwood lignins. Carbon 60:531–537.10.1016/j.carbon.2013.04.087Search in Google Scholar

Fahmi, R., Bridgwater, A.V., Thain, S.C., Donnison, I.S., Morris, P.M., Yates, N. (2007) Prediction of Klason lignin and lignin thermal degradation products by Py-GC/MS in a collection of Lolium and Festuca grasses. J. Anal. Appl. Pyrol. 80:16–23.10.1016/j.jaap.2006.12.018Search in Google Scholar

Fierro, C.M., Górka, J., Zazo, J.A., Rodriguez, J.J., Ludwinowicz, J., Jaroniec, M. (2013) Colloidal templating synthesis and adsorption characteristics of microporous-mesoporous carbons from Kraft lignin. Carbon 62:233–239.10.1016/j.carbon.2013.06.012Search in Google Scholar

Hayashi, J.I., Kazehaya, A., Muroyama, K., Watkinson, A.P. (2000) Preparation of activated carbon from lignin by chemical activation. Carbon 38:1873–1878.10.1016/S0008-6223(00)00027-0Search in Google Scholar

Herou, S., Ribadeneyra, M.C., Madhu, R., Araullo-Peters, V., Jensen, A., Schlee, P., Titirici, M. (2019) Ordered mesoporous carbons from lignin: a new class of biobased electrodes for supercapacitors. Green Chem. 21:550–559.10.1039/C8GC03497DSearch in Google Scholar

Huang, G., Zhang, F., Zhang, L., Du, X., Wang, J., Wang, L. (2014) Hierarchical NiFe2O4/Fe2O3 nanotubes derived from metal organic frameworks for superior lithium ion battery anodes. J. Mater. Chem. A 2:8048–8053.10.1039/C4TA00200HSearch in Google Scholar

Jeon, J.W., Zhang, L., Lutkenhaus, J.L., Laskar, D.D., Lemmon, J.P., Choi, D., Nandasiri, M.I., Hashmi, A., Xu, J., Motkuri, R.K., Fernandez, C.A., Liu, J., Tucker, M.P., McGrail, P.B., Yang, B., Nune, S.K. (2015) Controlling porosity in lignin-derived nanoporous carbon for supercapacitor applications. ChemSusChem 8:428–432.10.1002/cssc.201402621Search in Google Scholar PubMed

Kierzek, K., Frackowiak, E., Lota, G., Gryglewicz, G., Machnikowski, J. (2004) Electrochemical capacitors based on highly porous carbons prepared by KOH activation. Electrochim. Acta 49:515–523.10.1016/j.electacta.2003.08.026Search in Google Scholar

Li, D., Zhang, L., Chen, H., Wang, J., Ding, L.X., Wang, S., Ashman, P.J., Wang, H. (2016a) Graphene-based nitrogen-doped carbon sandwich nanosheets: a new capacitive process controlled anode material for high-performance sodium-ion batteries. J. Mater. Chem. A 4:8630–8635.10.1039/C6TA02139ESearch in Google Scholar

Li, H., Yuan, D., Tang, C., Wang, S., Sun, J., Li, Z., Tang, T., Wang, F., Gong, H., He, C. (2016b) Lignin-derived interconnected hierarchical porous carbon monolith with large areal/volumetric capacitances for supercapacitor. Carbon 100:151–157.10.1016/j.carbon.2015.12.075Search in Google Scholar

Libbrecht, W., Verberckmoes, A., Thybaut, J.W., Van Der Voort, P., De Clercq, J. (2017) Soft templated mesoporous carbons: tuning the porosity for the adsorption of large organic pollutants. Carbon 116:528–546.10.1016/j.carbon.2017.02.016Search in Google Scholar

Liu, C., Hu, J., Zhang, H., Xiao, R. (2016) Thermal conversion of lignin to phenols: relevance between chemical structure and pyrolysis behaviors. Fuel 182:864–870.10.1016/j.fuel.2016.05.104Search in Google Scholar

Martin-Gullon, I., Marco-Lozar, J.P., Cazorla-Amorós, D., Linares-Solano, A. (2004) Analysis of the microporosity shrinkage upon thermal post-treatment of H3PO4 activated carbons. Carbon 42:1339–1343.10.1016/j.carbon.2004.01.018Search in Google Scholar

Mullen, C.A., Boateng, A.A. (2010) Catalytic pyrolysis-GC/MS of lignin from several sources. Fuel Process. Technol. 91:1446–1458.10.1016/j.fuproc.2010.05.022Search in Google Scholar

Navarro-Suárez, A.M., Saurel, D., Sánchez-Fontecoba, P., Castillo-Martínez, E., Carretero-González, J., Rojo, T. (2018) Temperature effect on the synthesis of lignin-derived carbons for electrochemical energy storage applications. J. Power Sources 397:296–306.10.1016/j.jpowsour.2018.07.023Search in Google Scholar

Pang, J., Zhang, W., Zhang, H., Zhang, J., Zhang, H., Cao, G., Han, M., Yang, Y. (2018) Sustainable nitrogen-containing hierarchical porous carbon spheres derived from sodium lignosulfonate for high-performance supercapacitors. Carbon 132:280–293.10.1016/j.carbon.2018.02.077Search in Google Scholar

Prauchner, M.J., Sapag, K., Rodríguez-Reinoso, F. (2016) Tailoring biomass-based activated carbon for CH4 storage by combining chemical activation with H3PO4 or ZnCl2 and physical activation with CO2. Carbon 110:138–147.10.1016/j.carbon.2016.08.092Search in Google Scholar

Qin, Y., Yu, L., Wu, R., Yang, D., Qiu, X., Zhu, J.Y. (2016) Biorefinery lignosulfonates from sulfite-pretreated softwoods as dispersant for graphite. ACS Sustain. Chem. Eng. 4:2200–2205.10.1021/acssuschemeng.5b01664Search in Google Scholar

Sabornie, C., Tomonori, S. (2015) Lignin-derived advanced carbon materials. ChemSusChem 8:3941–3958.10.1002/cssc.201500692Search in Google Scholar PubMed

Saha, D., Li, Y., Bi, Z., Chen, J., Keum, J.K., Hensley, D.K., Grappe, H.A., Meyer 3rd, H.M., Dai, S., Paranthaman, M.P., Naskar, A.K. (2014) Studies on supercapacitor electrode material from activated lignin-derived mesoporous carbon. Langmuir 30:900–910.10.1021/la404112mSearch in Google Scholar PubMed

Santana, J.A., Carvalho, W.S., Ataíde, C.H. (2018) Catalytic effect of ZSM-5 zeolite and HY-340 niobic acid on the pyrolysis of industrial kraft lignins. Ind. Crops Prod. 111:126–132.10.1016/j.indcrop.2017.10.023Search in Google Scholar

Suhas, Carrott, P.J.M., Ribeiro Carrott, M.M.L. (2007) Lignin – from natural adsorbent to activated carbon: a review. Bioresour. Technol. 98:2301–2312.10.1016/j.biortech.2006.08.008Search in Google Scholar PubMed

Sun, X., Zhang, X., Zhang, H., Xu, N., Wang, K., Ma, Y. (2014) High performance lithium-ion hybrid capacitors with pre-lithiated hard carbon anodes and bifunctional cathode electrodes. J. Power Sources 270:318–325.10.1016/j.jpowsour.2014.07.146Search in Google Scholar

Thambiliyagodage, C.J., Ulrich, S., Araujo, P.T., Bakker, M.G. (2018) Catalytic graphitization in nanocast carbon monoliths by iron, cobalt and nickel nanoparticles. Carbon 134:452–463.10.1016/j.carbon.2018.04.002Search in Google Scholar

Wang, H., Qiu, X., Liu, W., Yang, D. (2017) Facile preparation of well-combined lignin-based carbon/ZnO hybrid composite with excellent photocatalytic activity. Appl. Surf. Sci. 426:206–216.10.1016/j.apsusc.2017.07.112Search in Google Scholar

Wang, H., Lin, W., Qiu, X., Fu, F., Zhong, R., Liu, W., Yang, D. (2018) In situ synthesis of flowerlike lignin/ZnO composite with excellent UV-absorption properties and its application in polyurethane. ACS Sustain. Chem. Eng. 6:3696–3705.10.1021/acssuschemeng.7b04038Search in Google Scholar

Wang, H., Pu, Y., Ragauskas, A., Yang, B. (2019) From lignin to valuable products strategies, challenges, and prospects. Bioresour. Technol. 271:449–461.10.1016/j.biortech.2018.09.072Search in Google Scholar PubMed

Wang, J., Deng, Y., Qian, Y., Qiu, X., Ren, Y., Yang, D. (2016) Reduction of lignin color via one-step UV irradiation. Green Chem. 18:695–699.10.1039/C5GC02180DSearch in Google Scholar

Wang, J., Kaskel, S. (2012) KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 22:23710–23715.10.1039/c2jm34066fSearch in Google Scholar

Xi, Y., Yang, D., Qiu, X., Wang, H., Huang, J., Li, Q. (2018) Renewable lignin-based carbon with a remarkable electrochemical performance from potassium compound activation. Ind. Crops Prod. 124:747–754.10.1016/j.indcrop.2018.08.018Search in Google Scholar

Xi, Y., Wang, Y., Yang, D., Zhang, Z., Liu, W., Li, Q., Qiu, X. (2019a) K2CO3 activation enhancing the graphitization of porous lignin carbon derived from enzymatic hydrolysis lignin for high performance lithium-ion storage. J. Alloys Compd. 785:706–714.10.1016/j.jallcom.2019.01.039Search in Google Scholar

Xi, Y., Yang, D., Liu, W., Qin, Y., Qiu, X. (2019b) Preparation of porous lignin-derived carbon/carbon nanotube composites by hydrophobic self-assembly and carbonization to enhance lithium storage capacity. Electrochim. Acta 303:1–8.10.1016/j.electacta.2019.01.094Search in Google Scholar

Xiong, W., Yang, D., Zhong, R., Li, Y., Zhou, H., Qiu, X. (2015) Preparation of lignin-based silica composite submicron particles from alkali lignin and sodium silicate in aqueous solution using a direct precipitation method. Ind. Crops Prod. 74:285–292.10.1016/j.indcrop.2015.05.021Search in Google Scholar

Xiong, W., Qiu, X., Yang, D., Zhong, R., Qian, Y., Li, Y., Wang, H. (2017) A simple one-pot method to prepare UV-absorbent lignin/silica hybrids based on alkali lignin from pulping black liquor and sodium metasilicate. Chem. Eng. J. 326:803–810.10.1016/j.cej.2017.05.041Search in Google Scholar

Yang, J., Zhou, X., Li, J., Zou, Y., Tang, J. (2012) Study of nano-porous hard carbons as anode materials for lithium ion batteries. Mater. Chem. Phys. 135:445–450.10.1016/j.matchemphys.2012.05.006Search in Google Scholar

Yu, B., Chang, Z., Wang, C. (2016) The key pre-pyrolysis in lignin-based activated carbon preparation for high performance supercapacitors. Mater. Chem. Phys. 181:187–193.10.1016/j.matchemphys.2016.06.048Search in Google Scholar

Zhang, H., Jia, D., Yang, Z., Yu, F., Su, Y., Wang, D., Shen, Q. (2017) Alkaline lignin derived porous carbon as an efficient scaffold for lithium-selenium battery cathode. Carbon 122:547–555.10.1016/j.carbon.2017.07.004Search in Google Scholar

Zhang, W., Yin, J., Lin, Z., Lin, H., Lu, H., Wang, Y., Huang, W. (2015a) Facile preparation of 3D hierarchical porous carbon from lignin for the anode material in lithium ion battery with high rate performance. Electrochim. Acta 176:1136–1142.10.1016/j.electacta.2015.08.001Search in Google Scholar

Zhang, Y., Jia, M., Gao, H., Yu, J., Wang, L., Zou, Y., Qin, F., Zhao, Y. (2015b) Porous hollow carbon spheres: facile fabrication and excellent supercapacitive properties. Electrochim. Acta 184:32–39.10.1016/j.electacta.2015.10.042Search in Google Scholar

Zhou, M., Qiu, X., Yang, D., Lou, H., Ouyang, X. (2007) High-performance dispersant of coal–water slurry synthesized from wheat straw alkali lignin. Fuel Process. Technol. 88:375–382.10.1016/j.fuproc.2006.11.004Search in Google Scholar

Zhou, H., Qiu, X., Yang, D., Xie, S. (2016) Laccase and xylanase incubation enhanced the sulfomethylation reactivity of alkali lignin. ACS Sustain. Chem. Eng. 4:1248–1254.10.1021/acssuschemeng.5b01291Search in Google Scholar

Zhu, Y., Chen, M., Li, Q., Yuan, C., Wang, C. (2018) A porous biomass-derived anode for high-performance sodium-ion batteries. Carbon 129:695–701.10.1016/j.carbon.2017.12.103Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/hf-2019-0107).


Received: 2019-04-14
Accepted: 2019-08-21
Published Online: 2019-12-12
Published in Print: 2020-02-25

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.5.2024 from https://www.degruyter.com/document/doi/10.1515/hf-2019-0107/html
Scroll to top button