Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 16, 2023

Dual-band open-loop monopole (2 × 1) printed MIMO antenna for 4G and 5G applications

  • Abdulghafor A. Abdulhameed ORCID logo EMAIL logo , Falih M. Alnahwi and Abdulkareem S. Abdullah
From the journal Frequenz

Abstract

This paper presents a compact dual-band open-loop monopole MIMO antenna to serve 4G/5G applications. This antenna consists of two printed monopole antennas with very high isolation. Two enhancement techniques are utilized to improve the isolation between ports. Since each technique can provide high isolation of a single band, a combination of λ/4 slot and T-shape techniques are used to achieve high isolation of −19 dB and −35 dB at 2.4 GHz and 3.5 GHz, respectively. The proposed design has high efficiency, a low envelope correlation coefficient, and an acceptable level of realized gain (2.7 dBi and 2.2 dBi) at low and high bands. This design has been fabricated using low-profile printed circuit technology with a compact patch size of 50 × 25 mm2 based on an FR-4 substrate. Moreover, the simulation and measurement results are in good agreement.


Corresponding author: Abdulghafor A. Abdulhameed, Department of Electronics and Information Technology, Faculty of Electrical Engineering, University of West Bohemia, Pilsen, Czech Republic; and Department of Electrical Techniques, Qurna Technique Institue, Southern Technical University, Basrah, Iraq, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] J. Z. Tang, F. Faraz, X. Chen, et al.., “A metasurface superstrate for mutual coupling reduction of large antenna arrays,” IEEE Access, vol. 8, pp. 126859–126867, 2020, https://doi.org/10.1109/access.2020.3008162.Search in Google Scholar

[2] N. O. Parchin, Y. I. A. Al-Yasir, H. J. Basherlou, and R. A. Abd-Alhameed, “A closely spaced dual-band mimo patch antenna with reduced mutual coupling for 4G/5G applications,” Prog. Electromag. Res. C, vol. 101, pp. 71–80, 2020, https://doi.org/10.2528/pierc20013001.Search in Google Scholar

[3] A. A. Deshmukh, A. Nishad, G. Gosavi, P. Narayanan, S. Nayak, and A. G. Ambekar, “Novel π-shape microstrip antenna design for multi-band response,” in Proceedings of International Conference on Wireless Communication (Lecture Notes on Data Engineering and Communications Technologies), 2018, pp. 185–193.10.1007/978-981-10-8339-6_21Search in Google Scholar

[4] B. R. Rathod and S. L. Nalbalwar, “Tri band antenna for 2.4/3.5/5.2 GHz WLAN and WiMAX applications,” in 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS), 2018.10.1109/ICCONS.2018.8663007Search in Google Scholar

[5] S. K. Divakaran, D. D. Krishna,Nasimuddin, and J. K. Antony, “Dual-band multi-port rectenna for Rf energy harvesting,” Prog. Electromag. Res. C, vol. 107, pp. 17–31, 2021, https://doi.org/10.2528/pierc20100802.Search in Google Scholar

[6] Y. E. Yamac and S. C. Asaran, “Dual band planar inverted F antenna design for WLAN and WiMAX applications,” in 2015 23rd Signal Processing and Communications Applications Conference, (Siu), 2015, pp. 2142–2144.10.1109/SIU.2015.7130296Search in Google Scholar

[7] H. Mkindu and H. Iddi, “Multi-bands circular ring monopole antenna with double L-shape for WLAN/WiMAX applications,” Tanzan. J. Sci., vol. 47, no. 1, pp. 228–242, 2021.Search in Google Scholar

[8] T. Yue, Z. H. Jiang, K. Zhang, J. Yi, W. Hong, and D. H. Werner, “Polarization-controllable dual-band antennas using nonbianisotropic complementary split ring resonator-loaded metasurfaces,” IEEE Trans. Antenn. Propag., vol. 69, no. 2, pp. 1146–1151, 2021, https://doi.org/10.1109/tap.2020.3008062.Search in Google Scholar

[9] F. M. Alnahwi, A. Abdulhameed, and A. S. Abdullah, “A compact integrated UWB/reconfigurable microstrip antenna for interweave cognitive radio applications,” Int. J. Commun. Antenn. Propag., vol. 8, no. 1, pp. 81–86, 2018. https://doi.org/10.15866/irecap.v8i1.13078.Search in Google Scholar

[10] A. G. Hameed, A. K. Abdullah, H. M. Sabbagh, and H. K. Bashir, “Mutual coupling reduction of a (2×1) MIMO antenna system using parasitic element structure for WLAN applications,” J. Emerg. Trends Comput. Inf. Sci., vol. 6, no. 11, pp. 605–613, 2015.Search in Google Scholar

[11] H. Q. Al-Fayyadh, A. A. Abdulhameed, A. S. Abdullah, and H. M. Alsabbagh, “Flexible (2x1) MIMO antenna with electromagnetic band gap unit cell for WiMAX applications,” Turk. J. Electr. Eng. Comput. Sci., vol. 25, no. 4, pp. 3061–3072, 2017, https://doi.org/10.3906/elk-1603-94.Search in Google Scholar

[12] F. M. Alnahwi, A. A. Abdulhameed, A. S. Abdullah, A. Ullah, and R. A. Abd-Alhameed, “Mutual coupling reduction of a dual-band 2×1 MIMO antenna using two pairs of λ/4 slots for WLAN/WiMAX applications.” in Loughborough Antennas & Propagation Conference 2018 (LAPC, 2018), 2018.10.1049/cp.2018.1431Search in Google Scholar

[13] M. S. Sharawi, A. B. Numan, and D. N. Aloi, “Isolation improvement in a dual-band dual-element mimo antenna system using capacitively loaded loops,” Prog. Electromagn. Res., vol. 134, pp. 247–266, 2013, https://doi.org/10.2528/pier12090610.Search in Google Scholar

[14] P. S. Patil, “Mutual coupling reduction techniques on a multiband compact planar MIMO antenna,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 8, no. 7, pp. 2025–2032, 2020, https://doi.org/10.22214/ijraset.2020.30733.Search in Google Scholar

[15] T. Maturi and B. Harikrishna, “Electronic band-gap integrated low mutual coupling dual-band MIMO antenna,” Int. J. Electron., vol. 107, no. 7, pp. 1166–1176, 2020, https://doi.org/10.1080/00207217.2020.1726483.Search in Google Scholar

[16] C. M. Luo, J. S. Hong, and M. Amin, “Mutual coupling reduction for dual-band MIMO antenna with simple structure,” Radioengineering, vol. 26, no. 1, pp. 51–56, 2017, https://doi.org/10.13164/re.2017.0051.Search in Google Scholar

[17] A. H. Jabire, A. G. Abdullahi, S. Saminu, A. M. Jajere, and A. M. Sadiq, “Mutual coupling reduction for triple band MIMO antenna using stub loading technique,” SLU J. Sci. Technol., vol. 2, no. 1, pp. 53–64, 2021.10.2478/ecce-2021-0002Search in Google Scholar

[18] M. A. Jamshed, M. Ur-Rehman, J. Frnda, A. A. Althuwayb, A. Nauman, and K. Cengiz, “Dual band and dual diversity four-element MIMO dipole for 5G handsets,” Sensors, vol. 21, no. 3, pp. 1–13, 2021. https://doi.org/10.3390/s21030767.Search in Google Scholar PubMed PubMed Central

[19] F. Bahmanzadeh and F. Mohajeri, “Simulation and fabrication of a high-isolation very compact MIMO antenna for ultra-wide band applications with dual band-notched characteristics,” AEU – Int. J. Electron. Commun., vol. 128, pp. 1–8, 2021. https://doi.org/10.1016/j.aeue.2020.153505.Search in Google Scholar

[20] J. Kulkarni, A. Desai, and C.-Y. D. Sim, “Wideband Four-Port MIMO antenna array with high isolation for future wireless systems,” AEU – Int. J. Electron. Commun., vol. 128, pp. 1–14, 2021. https://doi.org/10.1016/j.aeue.2020.153507.Search in Google Scholar

[21] A. Pant, M. Singh, and M. S. Parihar, “A frequency reconfigurable/switchable MIMO antenna for LTE and early 5G applications,” AEU – Int. J. Electron. Commun., vol. 131, pp. 1–10, 2021. https://doi.org/10.1016/j.aeue.2021.153638.Search in Google Scholar

[22] A. A. Abdulhameed, “Circular slotted monopole printed antenna with grounded stub WLAN band-notch for UWB applications,” Aust. J. Electr. Electron. Eng., vol. 14, nos. 3–4, pp. 59–63, 2017, https://doi.org/10.1080/1448837x.2018.1452331.Search in Google Scholar

[23] 3D EM Simulation Software, CST Studio Suite, 2020.Search in Google Scholar

[24] S. Zuo, Y.-Z. Yin, W.-J. Wu, Z.-Y. Zhang, and J. Ma, “Investigations of reduction of mutual coupling between two planar monopoles using two λ/4 slots,” Prog. Electromagn. Res. Lett., vol. 19, pp. 9–18, 2010, https://doi.org/10.2528/pierl10100609.Search in Google Scholar

Received: 2022-07-10
Accepted: 2023-02-02
Published Online: 2023-02-16
Published in Print: 2023-08-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/freq-2022-0141/html
Scroll to top button