Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 30, 2021

Compact super-wideband MIMO antenna with improved isolation for wireless communications

  • Ajit Kumar Singh ORCID logo EMAIL logo , Santosh Kumar Mahto and Rashmi Sinha
From the journal Frequenz

Abstract

This paper presents a miniaturized dual-element Super-Wideband (SWB) Multiple-Input-Multiple-Output (MIMO) antenna. The operation bandwidth is enhanced by 175% with a Bandwidth Dimension Ratio (BDR) of 6960, using a tapered microstrip line and employing an improved isolation technique. An inverted T-slot is used in the partial ground plane of the antenna. Isolation is increased up to 25 dB over the operating band (1.6–24.5 GHz) by using a pair of T-shaped stubs and a rectangular strip between them. A detailed analysis of the parameters Envelope Correlation Coefficient (ECC), Diversity Gain (DG), Mean Effective Gain (MEG), Total Active Reflection Coefficient (TARC), isolation between the ports, and Channel Capacity Loss (CCL) is undertaken to investigate the performance of proposed SWB MIMO antenna. A prototype of the proposed design is developed by fabricating on the FR–4 (loss tangent 0.02) dielectric substrate of electrical dimension 0.18λ 0 × 0.14λ 0. The measured parameters are in good agreement with the simulated ones. The proposed antenna focusses on 2.4–2.483 GHz frequency band (Bluetooth) and 3.4–3.6 GHz frequency band with a center frequency of 3.5 GHz (as part of the sub 6 GHz 5G band).


Corresponding author: Ajit Kumar Singh, Department of Electronics & Communication Engineering, Indian Institute of Information Technology, Ranchi, Jharkhand, 834010, India, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] W. Wiesbeck, G. Adamiuk, and C. Sturm, “Basic properties and design principles of uwb antennas,” Proc. IEEE, vol. 97, no. 2, pp. 372–385, 2009, https://doi.org/10.1109/jproc.2008.2008838.Search in Google Scholar

[2] J. Banerjee, A. Gorai, and R. Ghatak, “Design and analysis of a compact uwb mimo antenna incorporating fractal inspired isolation improvement and band rejection structures,” AEU-Int. J. Electron. Commun., vol. 122, p. 153274, 2020, https://doi.org/10.1016/j.aeue.2020.153274.Search in Google Scholar

[3] H. G. Schantz, “A brief history of uwb antennas,” IEEE Aero. Electron. Syst. Mag., vol. 19, no. 4, pp. 22–26, 2004, https://doi.org/10.1109/maes.2004.1301770.Search in Google Scholar

[4] Y. Dong, W. Hong, L. Liu, Y. Zhang, and Z. Kuai, “Performance analysis of a printed super-wideband antenna,” Microw. Opt. Technol. Lett., vol. 51, no. 4, pp. 949–956, 2009, https://doi.org/10.1002/mop.24222.Search in Google Scholar

[5] N. P. Agrawall, G. Kumar, and K. P. Ray, “Wide-band planar monopole antennas,” IEEE Trans. Antenn. Propag., vol. 46, no. 2, pp. 294–295, 1998, https://doi.org/10.1109/8.660976.Search in Google Scholar

[6] W. Balani, M. Sarvagya, T. Ali, et al.., “Design techniques of super-wideband antenna–existing and future prospective,” IEEE Access, vol. 7, pp. 141241–141257, 2019, https://doi.org/10.1109/access.2019.2943655.Search in Google Scholar

[7] M. John and M. J. Ammann, “Optimization of impedance bandwidth for the printed rectangular monopole antenna,” Microw. Opt. Technol. Lett., vol. 47, no. 2, pp. 153–154, 2005, https://doi.org/10.1002/mop.21109.Search in Google Scholar

[8] K.-R. Chen, J.-S. Row, and C.-Y.-D. Sim, “A compact monopole antenna for super wideband applications,” IEEE Antenn. Wireless Propag. Lett., vol. 10, pp. 488–491, 2011, https://doi.org/10.1109/lawp.2011.2157071.Search in Google Scholar

[9] P. Okas, A. Sharma, G. Das, and R. K. Gangwar, “Elliptical slot loaded partially segmented circular monopole antenna for super wideband application,” AEU-Int. J. Electron. Commun., vol. 88, pp. 63–69, 2018, https://doi.org/10.1016/j.aeue.2018.03.004.Search in Google Scholar

[10] J. Liu, K. P. Esselle, S. G. Hay, and S. S. Zhong, “Compact super-wideband asymmetric monopole antenna with dual-branch feed for bandwidth enhancement,” Electron. Lett., vol. 49, no. 8, pp. 515–516, 2013, https://doi.org/10.1049/el.2012.4015.Search in Google Scholar

[11] B. L. Shahu, S. Pal, and N. Chattoraj, “Design of super wideband hexagonal-shaped fractal antenna with triangular slot,” Microw. Opt. Technol. Lett., vol. 57, no. 7, pp. 1659–1662, 2015, https://doi.org/10.1002/mop.29184.Search in Google Scholar

[12] M. Ali Dorostkar, M. T. Islam, and R. Azim, “Design of a novel super wide band circular-hexagonal fractal antenna,” Prog. Electromagn. Res., vol. 139, pp. 229–245, 2013, https://doi.org/10.2528/pier13030505.Search in Google Scholar

[13] S. Singhal and A. K. Singh, “Cpw-fed hexagonal sierpinski super wideband fractal antenna,” IET Microw., Antennas Propag., vol. 10, no. 15, pp. 1701–1707, 2016, https://doi.org/10.1049/iet-map.2016.0154.Search in Google Scholar

[14] S. Singhal and A. K. Singh, “Cpw-fed phi-shaped monopole antenna for super-wideband applications,” Prog. Electromagn. Res., vol. 64, pp. 105–116, 2016, https://doi.org/10.2528/pierc16022401.Search in Google Scholar

[15] M. Manohar, R. S. Kshetrimayum, and A. K. Gogoi, “Printed monopole antenna with tapered feed line, feed region and patch for super wideband applications,” IET Microw., Antennas Propag., vol. 8, no. 1, pp. 39–45, 2014, https://doi.org/10.1049/iet-map.2013.0094.Search in Google Scholar

[16] T. K. Saha, C. Goodbody, T. Karacolak, and P. K. Sekhar, “A compact monopole antenna for ultra-wideband applications,” Microw. Opt. Technol. Lett., vol. 61, no. 1, pp. 182–186, 2019, https://doi.org/10.1002/mop.31519.Search in Google Scholar

[17] M. N. Rahman, M. T. Islam, M. Z. Mahmud, and M. Samsuzzaman, “Compact microstrip patch antenna proclaiming super wideband characteristics,” Microw. Opt. Technol. Lett., vol. 59, no. 10, pp. 2563–2570, 2017, https://doi.org/10.1002/mop.30770.Search in Google Scholar

[18] S. Hakimi, S. Kamal Abdul Rahim, M. Abedian, S. M. Noghabaei, and M. Khalily, “Cpw-fed transparent antenna for extended ultrawideband applications,” IEEE Antenn. Wireless Propag. Lett., vol. 13, pp. 1251–1254, 2014, https://doi.org/10.1109/lawp.2014.2333091.Search in Google Scholar

[19] H. D. Oskouei and A. Mirtaheri, “A monopole super wideband microstrip antenna with band-notch rejection,” in 2017 Progress in Electromagnetics Research Symposium-Fall (PIERS-FALL), Singapore, IEEE, 2017, pp. 2019–2024.10.1109/PIERS-FALL.2017.8293470Search in Google Scholar

[20] P. Okas, A. Sharma, and R. K. Gangwar, “Super-wideband cpw fed modified square monopole antenna with stabilized radiation characteristics,” Microw. Opt. Technol. Lett., vol. 60, no. 3, pp. 568–575, 2018, https://doi.org/10.1002/mop.31006.Search in Google Scholar

[21] A. Azari, “A new super wideband fractal microstrip antenna,” IEEE Trans. Antenn. Propag., vol. 59, no. 5, pp. 1724–1727, 2011, https://doi.org/10.1109/tap.2011.2128294.Search in Google Scholar

[22] C. Á. Figueroa-Torres, J. L. Medina-Monroy, H. Lobato-Morales, R. A. Chávez-Pérez, and A. Calvillo-Téllez, “A novel fractal antenna based on the sierpinski structure for super wide-band applications,” Microw. Opt. Technol. Lett., vol. 59, no. 5, pp. 1148–1153, 2017, https://doi.org/10.1002/mop.30489.Search in Google Scholar

[23] J. Yeo and J.-I. Lee, “Coupled-sectorial-loop antenna with circular sectors for super wideband applications,” Microw. Opt. Technol. Lett., vol. 56, no. 7, pp. 1683–1689, 2014, https://doi.org/10.1002/mop.28416.Search in Google Scholar

[24] S. Ur Rahman, Q. Cao, H. Ullah, and H. Khalil, “Compact design of trapezoid shape monopole antenna for swb application,” Microw. Opt. Technol. Lett., vol. 61, no. 8, pp. 1931–1937, 2019, https://doi.org/10.1002/mop.31805.Search in Google Scholar

[25] S. Barbarino and F. Consoli, “Study on super-wideband planar asymmetrical dipole antennas of circular shape,” IEEE Trans. Antenn. Propag., vol. 58, no. 12, pp. 4074–4078, 2010, https://doi.org/10.1109/tap.2010.2078469.Search in Google Scholar

[26] M. Samsuzzaman and M. T. Islam, “A semicircular shaped super wideband patch antenna with high bandwidth dimension ratio,” Microw. Opt. Technol. Lett., vol. 57, no. 2, pp. 445–452, 2015, https://doi.org/10.1002/mop.28872.Search in Google Scholar

[27] H. Ullah, S. Ur Rahman, Q. Cao, I. Khan, and H. Ullah, “Design of swb mimo antenna with extremely wideband isolation,” Electronics, vol. 9, no. 1, p. 194, 2020, https://doi.org/10.3390/electronics9010194.Search in Google Scholar

[28] G. Saxena, P. Jain, and Y. K. Awasthi, “High diversity gain super-wideband single band-notch mimo antenna for multiple wireless applications,” IET Microw., Antennas Propag., vol. 14, no. 1, pp. 109–119, 2019, https://doi.org/10.1049/iet-map.2019.0450.Search in Google Scholar

[29] D. K. Raheja, S. Kumar, and B. K. Kanaujia, “Compact quasi-elliptical-self-complementary four-port super-wideband mimo antenna with dual band elimination characteristics,” AEU-Int. J. Electron. Commun., vol. 114, p. 153001, 2020, https://doi.org/10.1016/j.aeue.2019.153001.Search in Google Scholar

[30] P. Kumar, S. Urooj, and F. Alrowais, “Design of quad-port mimo/diversity antenna with triple-band elimination characteristics for super-wideband applications,” Sensors, vol. 20, no. 3, p. 624, 2020, https://doi.org/10.3390/s20030624.Search in Google Scholar PubMed PubMed Central

[31] J. Anguera, C. Puente, C. Borja, and J. Soler, “Fractal shaped antennas: A review,” in Encyclopedia of RF and Microwave Engineering, vol. 2, USA, Wiley, 2005, pp. 1620–1635.10.1002/0471654507.eme128Search in Google Scholar

[32] A. A. Ghannad, M. Khalily, P. Xiao, R. Tafazolli, and A. A. Kishk, “Enhanced matching and vialess decoupling of nearby patch antennas for mimo system,” IEEE Antenn. Wireless Propag. Lett., vol. 18, no. 6, pp. 1066–1070, 2019, https://doi.org/10.1109/lawp.2019.2906308.Search in Google Scholar

[33] K. Yu, Y. Li, X. Liu, et al.., “Mutual coupling reduction of a mimo antenna array using 3-D novel meta-material structures,” Appl. Comput. Electromagn. Soc. J., vol. 33, no. 7, pp. 758–763, 2018.Search in Google Scholar

[34] A. Kumar, S. K. Mahto, R. Sinha, and A. Choubey, “Dual circular slot ring triple-band mimo antenna for 5G applications,” Frequenz, vol. 75, pp. 91–100, 2020, https://doi.org/10.1515/freq-2020-0138.Search in Google Scholar

[35] A. A. Glazunov, A. F. Molisch, and F. Tufvesson, “Mean effective gain of antennas in a wireless channel,” IET Microw., Antennas Propag., vol. 3, no. 2, pp. 214–227, 2009, https://doi.org/10.1049/iet-map:20080041.10.1049/iet-map:20080041Search in Google Scholar

[36] S. L. Loyka, “Channel capacity of mimo architecture using the exponential correlation matrix,” IEEE Commun. Lett., vol. 5, no. 9, pp. 369–371, 2001, https://doi.org/10.1109/4234.951380.Search in Google Scholar

Received: 2020-12-08
Accepted: 2021-07-18
Published Online: 2021-07-30
Published in Print: 2021-10-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/freq-2020-0213/html
Scroll to top button