Skip to content
Licensed Unlicensed Requires Authentication Published online by De Gruyter January 4, 2024

Multilinear Fourier integral operators on modulation spaces

  • Aparajita Dasgupta , Lalit Mohan and Shyam Swarup Mondal EMAIL logo
From the journal Forum Mathematicum

Abstract

In this article, we study properties of multilinear Fourier integral operators on weighted modulation spaces. In particular, using the theory of Gabor frames, we study boundedness of multilinear Fourier integral operators on products of weighted modulation spaces. Further, we investigate the periodic multilinear Fourier integral operator. Finally, we study continuity of bilinear pseudo-differential operators on modulation spaces for certain symbol classes, namely 𝐒𝐆 -class.

MSC 2020: 35S30; 47G30

Communicated by Christopher D. Sogge


Funding statement: The first and third authors were supported by Core Research Grant (RP03890G), Science and Engineering Research Board (SERB), DST, India. The second author was supported by IIT Delhi Institute fellowship.

Acknowledgements

The authors wish to thank the anonymous referees for their helpful comments and suggestions that helped to improve the quality of the paper.

References

[1] A. Bényi and K. Okoudjou, Bilinear pseudodifferential operators on modulation spaces, J. Fourier Anal. Appl. 10 (2004), no. 3, 301–313. 10.1007/s00041-004-0977-5Search in Google Scholar

[2] J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Grundlehren Math. Wiss. 223, Springer, Berlin, 1976. 10.1007/978-3-642-66451-9Search in Google Scholar

[3] E. Cordero, F. Nicola and L. Rodino, On the global boundedness of Fourier integral operators, Ann. Global Anal. Geom. 38 (2010), no. 4, 373–398. 10.1007/s10455-010-9219-zSearch in Google Scholar

[4] E. Cordero, F. Nicola and L. Rodino, Time-frequency analysis of Fourier integral operators, Commun. Pure Appl. Anal. 9 (2010), no. 1, 1–21. 10.3934/cpaa.2010.9.1Search in Google Scholar

[5] S. Coriasco and M. Ruzhansky, Global L p continuity of Fourier integral operators, Trans. Amer. Math. Soc. 366 (2014), no. 5, 2575–2596. 10.1090/S0002-9947-2014-05911-4Search in Google Scholar

[6] J. J. Duistermaat and L. Hörmander, Fourier integral operators. II, Acta Math. 128 (1972), no. 3–4, 183–269. 10.1007/BF02392165Search in Google Scholar

[7] G. I. Èskin, Degenerate elliptic pseudodifferential equations of principal type, Mat. Sb. (N. S.) 82(124) (1970), 585–628. Search in Google Scholar

[8] H. G. Feichtinger, Modulation spaces over locally compact Abelian groups, Technical Report, University Vienna, 1983. Search in Google Scholar

[9] H. G. Feichtinger and K. Gröchenig, Gabor frames and time-frequency analysis of distributions, J. Funct. Anal. 146 (1997), no. 2, 464–495. 10.1006/jfan.1996.3078Search in Google Scholar

[10] G. B. Folland, Harmonic Analysis in Phase Space, Ann. of Math. Stud. 122, Princeton University, Princeton, 1989. 10.1515/9781400882427Search in Google Scholar

[11] D. Fujiwara, A construction of the fundamental solution for the Schrödinger equations, Proc. Japan Acad. Ser. A Math. Sci. 55 (1979), no. 1, 10–14. 10.3792/pjaa.55.10Search in Google Scholar

[12] L. Grafakos and M. M. Peloso, Bilinear Fourier integral operators, J. Pseudo-Differ. Oper. Appl. 1 (2010), no. 2, 161–182. 10.1007/s11868-010-0011-4Search in Google Scholar

[13] K. Gröchenig, Foundations of Time-Frequency Analysis, Appl. Numer. Harmon. Anal., Birkhäuser, Boston, 2001. 10.1007/978-1-4612-0003-1Search in Google Scholar

[14] B. Helffer and D. Robert, Comportement asymptotique précise du spectre d’opérateurs globalement elliptiques dans 𝐑 n , Goulaouic–Meyer–Schwartz Seminar, 1980–1981, École Polytechnique, Palaiseau (1981), Exp. No. II. Search in Google Scholar

[15] Q. Hong and L. Zhang, L p estimates for bi-parameter and bilinear Fourier integral operators, Acta Math. Sin. (Engl. Ser.) 33 (2017), no. 2, 165–186. 10.1007/s10114-016-6269-6Search in Google Scholar

[16] L. Hörmander, Fourier integral operators. I, Acta Math. 127 (1971), no. 1–2, 79–183. 10.1007/BF02392052Search in Google Scholar

[17] L. Hörmander, The Analysis of Linear Partial Differential Operators. IV, Grundlehren Math. Wiss. 275, Springer, Berlin, 1985. Search in Google Scholar

[18] S. Rodríguez-López, D. Rule and W. Staubach, A Seeger–Sogge–Stein theorem for bilinear Fourier integral operators, Adv. Math. 264 (2014), 1–54. 10.1016/j.aim.2014.07.009Search in Google Scholar

[19] S. Rodríguez-López, D. Rule and W. Staubach, Global boundedness of a class of multilinear Fourier integral operators, Forum Math. Sigma 9 (2021), Paper No. e14. 10.1017/fms.2021.13Search in Google Scholar

[20] S. Rodríguez-López and W. Staubach, Estimates for rough Fourier integral and pseudodifferential operators and applications to the boundedness of multilinear operators, J. Funct. Anal. 264 (2013), no. 10, 2356–2385. 10.1016/j.jfa.2013.02.018Search in Google Scholar

[21] M. Ruzhansky and M. Sugimoto, Global L 2 -boundedness theorems for a class of Fourier integral operators, Comm. Partial Differential Equations 31 (2006), no. 4–6, 547–569. 10.1080/03605300500455958Search in Google Scholar

[22] M. Ruzhansky and M. Sugimoto, Weighted Sobolev L 2 estimates for a class of Fourier integral operators, Math. Nachr. 284 (2011), no. 13, 1715–1738. 10.1002/mana.200910080Search in Google Scholar

[23] M. Ruzhansky and V. Turunen, Pseudo-Differential Operators and Symmetries: Background Analysis and Advanced Topics, Pseudo Diff. Oper. 2, Birkhäuser, Basel, 2010. 10.1007/978-3-7643-8514-9Search in Google Scholar

[24] M. Ruzhansky and J. Wirth, Dispersive type estimates for Fourier integrals and applications to hyperbolic systems, Discrete Contin. Dyn. Syst. 2 (2011), 1263–1270. Search in Google Scholar

[25] A. Seeger, C. D. Sogge and E. M. Stein, Regularity properties of Fourier integral operators, Ann. of Math. (2) 134 (1991), no. 2, 231–251. 10.2307/2944346Search in Google Scholar

[26] M. A. Shubin, Pseudodifferential Operators and Spectral Theory, 2nd ed., Springer, Berlin, 2001. 10.1007/978-3-642-56579-3Search in Google Scholar

[27] C. D. Sogge, Fourier Integrals in Classical Analysis, Cambridge Tracts in Math. 105, Cambridge University, Cambridge, 1993. 10.1017/CBO9780511530029Search in Google Scholar

[28] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Math. Ser. 43, Princeton University, Princeton, 1993. 10.1515/9781400883929Search in Google Scholar

[29] T. Tao, The weak-type ( 1 , 1 ) of Fourier integral operators of order - ( n - 1 ) / 2 , J. Aust. Math. Soc. 76 (2004), no. 1, 1–21. 10.1017/S1446788700008661Search in Google Scholar

Received: 2023-04-29
Published Online: 2024-01-04

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/forum-2023-0158/html
Scroll to top button