Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 25, 2023

On the largest prime factor of non-zero Fourier coefficients of Hecke eigenforms

  • Sanoli Gun ORCID logo and Sunil L. Naik ORCID logo EMAIL logo
From the journal Forum Mathematicum

Abstract

Let τ denote the Ramanujan tau function. One is interested in possible prime values of τ function. Since τ is multiplicative and τ ( n ) is odd if and only if n is an odd square, we only need to consider τ ( p 2 n ) for primes p and natural numbers n 1 . This is a rather delicate question. In this direction, we show that for any ϵ > 0 and integer n 1 , the largest prime factor of τ ( p 2 n ) , denoted by P ( τ ( p 2 n ) ) , satisfies

P ( τ ( p 2 n ) ) > ( log p ) 1 8 ( log log p ) 3 8 - ϵ

for almost all primes p. This improves a recent work of Bennett, Gherga, Patel and Siksek. Our results are also valid for any non-CM normalized Hecke eigenforms with integer Fourier coefficients.


Communicated by Jan Bruinier


Acknowledgements

The authors would like to thank Purusottam Rath for his comments on an earlier version of the article and would like to thank the referee for suggesting an alternate proof of Lemma 15 and other valuable suggestions. Also the authors would like to acknowledge the support of DAE number theory plan project.

References

[1] T. Barnet-Lamb, D. Geraghty, M. Harris and R. Taylor, A family of Calabi–Yau varieties and potential automorphy II, Publ. Res. Inst. Math. Sci. 47 (2011), no. 1, 29–98. 10.2977/PRIMS/31Search in Google Scholar

[2] M. A. Bennett, A. Gherga, V. Patel and S. Siksek, Odd values of the Ramanujan tau function, Math. Ann. 382 (2022), no. 1–2, 203–238. 10.1007/s00208-021-02241-3Search in Google Scholar

[3] Y. F. Bilu, S. Gun and S. L. Naik, On a non-Archimedean analogue of a question of Atkin and Serre, Math. Ann. (2023), 10.1007/s00208-023-02686-8. 10.1007/s00208-023-02686-8Search in Google Scholar

[4] H. Carayol, Sur les représentations l-adiques attachées aux formes modulaires de Hilbert, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), no. 15, 629–632. Search in Google Scholar

[5] R. D. Carmichael, On the numerical factors of the arithmetic forms α n ± β n , Ann. of Math. (2) 15 (1913/14), no. 1–4, 30–48. 10.2307/1967797Search in Google Scholar

[6] L. Clozel, M. Harris and R. Taylor, Automorphy for some l-adic lifts of automorphic mod l Galois representations, Publ. Math. Inst. Hautes Études Sci. (2008), no. 108, 1–181. 10.1007/s10240-008-0016-1Search in Google Scholar

[7] P. Deligne, Formes modulaires et représentations l-adiques, Séminaire Bourbaki. Vol. 1968/69: Exposés 347–363, Lecture Notes in Math. 175, Springer, Berlin (1971), 139–172, Exp. No. 355. 10.1007/BFb0058810Search in Google Scholar

[8] D. S. Dummit and R. M. Foote, Abstract Algebra, 3rd ed., John Wiley & Sons, Hoboken, 2004. Search in Google Scholar

[9] W. Fulton and J. Harris, Representation Theory, Grad. Texts in Math. 129, Springer, New York, 1991. Search in Google Scholar

[10] M. Z. Garaev, V. C. Garcia and S. V. Konyagin, A note on the Ramanujan τ-function, Arch. Math. (Basel) 89 (2007), no. 5, 411–418. 10.1007/s00013-007-2246-8Search in Google Scholar

[11] S. Gun and M. R. Murty, Divisors of Fourier coefficients of modular forms, New York J. Math. 20 (2014), 229–239. Search in Google Scholar

[12] H. Halberstam and H.-E. Richert, Sieve Methods, London Math. Soc. Monogr. 4, Academic Press, London, 1974. Search in Google Scholar

[13] M. Harris, N. Shepherd-Barron and R. Taylor, A family of Calabi–Yau varieties and potential automorphy, Ann. of Math. (2) 171 (2010), no. 2, 779–813. 10.4007/annals.2010.171.779Search in Google Scholar

[14] J. C. Lagarias and A. M. Odlyzko, Effective versions of the Chebotarev density theorem, Algebraic Number Fields: L-Functions and Galois Properties (Durham 1975), Academic Press, London (1977), 409–464. Search in Google Scholar

[15] D. H. Lehmer, The primality of Ramanujan’s tau-function, Amer. Math. Monthly 72 (1965), no. 2, 15–18. 10.1080/00029890.1965.11970693Search in Google Scholar

[16] F. Luca and I. E. Shparlinski, Arithmetic properties of the Ramanujan function, Proc. Indian Acad. Sci. Math. Sci. 116 (2006), no. 1, 1–8. 10.1007/BF02829735Search in Google Scholar

[17] N. Lygeros and O. Rozier, Odd prime values of the Ramanujan tau function, Ramanujan J. 32 (2013), no. 2, 269–280. 10.1007/s11139-012-9420-8Search in Google Scholar

[18] F. Momose, On the l-adic representations attached to modular forms, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), no. 1, 89–109. Search in Google Scholar

[19] M. R. Murty and V. K. Murty, Prime divisors of Fourier coefficients of modular forms, Duke Math. J. 51 (1984), no. 1, 57–76. 10.1215/S0012-7094-84-05104-4Search in Google Scholar

[20] M. R. Murty, V. K. Murty and N. Saradha, Modular forms and the Chebotarev density theorem, Amer. J. Math. 110 (1988), no. 2, 253–281. 10.2307/2374502Search in Google Scholar

[21] M. R. Murty, V. K. Murty and T. N. Shorey, Odd values of the Ramanujan τ-function, Bull. Soc. Math. France 115 (1987), no. 3, 391–395. 10.24033/bsmf.2083Search in Google Scholar

[22] J. Neukirch, Algebraic Number Theory, Grundlehren Math. Wiss. 322, Springer, Berlin, 1999. 10.1007/978-3-662-03983-0Search in Google Scholar

[23] M. Ram Murty and V. Kumar Murty, Odd values of Fourier coefficients of certain modular forms, Int. J. Number Theory 3 (2007), no. 3, 455–470. 10.1142/S1793042107001036Search in Google Scholar

[24] K. A. Ribet, On l-adic representations attached to modular forms, Invent. Math. 28 (1975), 245–275. 10.1007/BF01425561Search in Google Scholar

[25] K. A. Ribet, Galois representations attached to eigenforms with Nebentypus, Modular Functions of one Variable. V (Bonn 1976), Lecture Notes in Math. 601, Springer, Berlin (1977), 17–51. 10.1007/BFb0063943Search in Google Scholar

[26] K. A. Ribet, On l-adic representations attached to modular forms. II, Glasg. Math. J. 27 (1985), 185–194. 10.1017/S0017089500006170Search in Google Scholar

[27] J.-P. Serre, Divisibilité de certaines fonctions arithmétiques, Enseign. Math. (2) 22 (1976), no. 3–4, 227–260. Search in Google Scholar

[28] J.-P. Serre, Linear Representations of Finite Groups, Grad. Texts in Math. 42, Springer, New York, 1977. 10.1007/978-1-4684-9458-7Search in Google Scholar

[29] J.-P. Serre, Quelques applications du théorème de densité de Chebotarev, Publ. Math. Inst. Hautes Études Sci. 54 (1981), 323–401. 10.1007/BF02698692Search in Google Scholar

[30] J.-P. Serre, Sur la lacunarité des puissances de η, Glasg. Math. J. 27 (1985), 203–221. 10.1017/S0017089500006194Search in Google Scholar

[31] C. L. Stewart, On divisors of Fermat, Fibonacci, Lucas, and Lehmer numbers, Proc. Lond. Math. Soc. (3) 35 (1977), no. 3, 425–447. 10.1112/plms/s3-35.3.425Search in Google Scholar

[32] H. P. F. Swinnerton-Dyer, On l-adic representations and congruences for coefficients of modular forms, Modular Functions of one Variable III (Antwerp 1972), Lecture Notes in Math. 350, Springer, Berlin (1973), 1–55. 10.1007/978-3-540-37802-0_1Search in Google Scholar

[33] J. Thorner, Effective forms of the Sato–Tate conjecture, Res. Math. Sci. 8 (2021), no. 1, Paper No. 4. 10.1007/s40687-020-00234-3Search in Google Scholar

[34] J. Thorner and A. Zaman, A unified and improved Chebotarev density theorem, Algebra Number Theory 13 (2019), no. 5, 1039–1068. 10.2140/ant.2019.13.1039Search in Google Scholar

Received: 2023-02-17
Revised: 2023-06-05
Published Online: 2023-08-25
Published in Print: 2024-01-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/forum-2023-0050/html
Scroll to top button