Skip to content
Licensed Unlicensed Requires Authentication Published online by De Gruyter March 11, 2024

Sacrificial anode materials to protect marine grade steel structures: a review

  • Ramalingam Vaira Vignesh ORCID logo EMAIL logo and P. Sathiya
From the journal Corrosion Reviews

Abstract

Marine structures are constantly exposed to the corrosive effects of seawater, making effective corrosion protection crucial for their longevity and performance. Sacrificial anodes, commonly made of zinc, aluminum, or magnesium alloys, are widely employed to mitigate corrosion by sacrificing themselves to protect the steel structures. However, the selection and implementation of sacrificial anode materials present various challenges that need to be addressed. This paper explores the challenges associated with sacrificial anode materials for steel structures and provides potential solutions. To overcome these challenges, the paper proposes solutions such as using advanced alloy compositions, protective coatings, hybrid anode systems, and improved design considerations. Furthermore, the importance of monitoring techniques to assess the performance and remaining lifespan of sacrificial anodes is emphasized. Several case studies and experimental findings are discussed to illustrate the effectiveness and limitations of sacrificial anode materials based on zinc alloys, aluminum alloys, and magnesium alloys. The paper highlights the need for ongoing research and development efforts to address the evolving demands of corrosion protection in marine environments.


Corresponding author: Ramalingam Vaira Vignesh, Department of Mechanical Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India, E-mail:

Funding source: Department of Science and Technology, Government of India

Award Identifier / Grant number: TAR/2022/000582

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors declare that there is no conflict of interest or competing interests in the research work.

  4. Research funding: The authors are thankful to the Department of Science and Technology, Government of India for providing financial assistance to carry out the research work on “Development of surface composites of Magnesium-Rare Earth alloy with controlled corrosion kinetics by Friction Stir Processing for sacrificial anodic applications” through the project vide “TAR/2022/000582.”

  5. Data availability: All data generated or analyzed during this study are included in this published article (and its supplementary information files).

  6. Code availability: Not applicable.

  7. Consent to participate: Not applicable.

References

Ahmadzadeh, M., Shahrabi, T., Izadi, M., Mohammadi, I., Hoseinieh, S., and Barnoush, A. (2019). Calcareous scales deposited in the organic coating defects during artificial seawater cathodic protection: effect of zinc cations. J. Alloys Compd. 784: 744–755, https://doi.org/10.1016/j.jallcom.2019.01.096.Search in Google Scholar

Ali, A.F. and Arshad, M.R. (2017). Design and development remotely operated vehicle for anode ship hull inspection. In: 20017 IEEE 7th international conference on underwater system technology: theory and applications (USYS). IEEE, Kuala Lumpur, Malaysia, pp. 1–5.10.1109/USYS.2017.8309454Search in Google Scholar

Altaf, K., Parvez, M., and Tanweer, M. (2018). Part-I: optimum designing of cathodic protection systems of marine platforms. In: 2018 15th international Bhurban conference on applied sciences and technology (IBCAST). IEEE, Islamabad, Pakistan, pp. 682–686.10.1109/IBCAST.2018.8312297Search in Google Scholar

Andrei, M., Di Gabriele, F., Bonora, P., and Scantlebury, D. (2003). Corrosion behaviour of magnesium sacrificial anodes in tap water. Mater. Corros. 54: 5–11, https://doi.org/10.1002/maco.200390010.Search in Google Scholar

Atta, A.M., Al-Hodan, H.A., Hameed, R.S.A., and Ezzat, A.O. (2017). Preparation of green cardanol-based epoxy and hardener as primer coatings for petroleum and gas steel in marine environment. Prog. Org. Coat. 111: 283–293, https://doi.org/10.1016/j.porgcoat.2017.06.002.Search in Google Scholar

Baorong, H., Jinglei, Z., Yanxu, L., and Fangying, Y. (2001). Study on effect of seawater salinity on electrochemical performance of Al anodes. Mater. Corros. 52: 219–222, https://doi.org/10.1002/1521-4176(200103)52:3<219::aid-maco219>3.0.co;2-w.10.1002/1521-4176(200103)52:3<219::AID-MACO219>3.0.CO;2-WSearch in Google Scholar

Barokah, B., Semin, S., Kaligis, D., Huwae, J., Fanani, M., and Rompas, P.T.D. (2018). Characteristics from recycled of zinc anode used as a corrosion preventing material on board ship IOP Conf. Ser. Mater. Sci. Eng. 306: 012021.10.1088/1757-899X/306/1/012021Search in Google Scholar

Bellezze, T., Fratesi, R., and Roventi, G. (2014). Cathodic protection of a ship propeller shaftby impressed current anodes. La Metallurgia Italiana, Italy.Search in Google Scholar

Benea, L., Mardare, L., and Simionescu, N. (2018). Anticorrosion performances of modified polymeric coatings on E32 naval steel in sea water. Prog. Org. Coat. 123: 120–127, https://doi.org/10.1016/j.porgcoat.2018.06.020.Search in Google Scholar

Botha, C. (2000). Cathodic protection for ships. Mar. Technol.: 31–35.Search in Google Scholar

Bounoughaz, M., Salhi, E., Benzine, K., Ghali, E., and Dalard, F. (2003). A comparative study of the electrochemical behaviour of Algerian zinc and a zinc from a commercial sacrificial anode. J. Mater. Sci. 38: 1139–1145, https://doi.org/10.1023/a:1022824813564.10.1023/A:1022824813564Search in Google Scholar

Bulatović, S., Aleksić, V., and Zečević, B. (2021). Corrosion protection of ship structures zaštita od korozije brodskih konstrukcija. Proc Knjiga Radova 177–182.Search in Google Scholar

Chambers, L.D., Stokes, K.R., Walsh, F.C., and Wood, R.J. (2006). Modern approaches to marine antifouling coatings. Surf. Coat. Technol. 201: 3642–3652, https://doi.org/10.1016/j.surfcoat.2006.08.129.Search in Google Scholar

Chen, P., Wang, G., Li, J., Zhang, M., and Qiao, X. (2023a). Preparation of textured epoxy resin coatings for excellent hydrophobicity and corrosion resistance. Prog. Org. Coat. 175: 107312, https://doi.org/10.1016/j.porgcoat.2022.107312.Search in Google Scholar

Chen, Q., Zhang, L., Zhang, J., Habib, S., Lu, G., Dai, J., and Liu, X. (2023b). Bio-based polybenzoxazines coatings for efficient marine antifouling. Prog. Org. Coat. 174: 107298, https://doi.org/10.1016/j.porgcoat.2022.107298.Search in Google Scholar

Cui, Q., Yi, D., Wang, H., Zhang, J., Xu, J., and Wang, B. (2019). Effects of grain size and secondary phase on corrosion behavior and electrochemical performance of Mg-3Al-5Pb-1Ga-Y sacrificial anode. J. Rare Earths 37: 1341–1350, https://doi.org/10.1016/j.jre.2018.11.012.Search in Google Scholar

Darowicki, K. and Szocinski, M. (2005). On organic coatings in marine applications. Pol. J. Environ. Stud. 14: 166–170.Search in Google Scholar

De Baere, K., Verstraelen, H., Lemmens, L., Lenaerts, S., Dewil, R., Van Ingelgem, Y., and Potters, G. (2014). A field study of the effectiveness of sacrificial anodes in ballast tanks of merchant ships. J. Mar. Sci. Technol. 19: 116–123, https://doi.org/10.1007/s00773-013-0232-3.Search in Google Scholar

Ding, Q., Chu, X., Shen, T. and Yu, X. (2018). Study on the electrochemical performance of sacrificial anode interfered by alternating current voltage. Int. J. Corros. Scale Inhib. 2018: 1523626. https://doi.org/10.1155/2018/1523626.Search in Google Scholar

El-Faham, A., Atta, A.M., Osman, S.M., Ezzat, A.O., El-Saeed, A.M., Othman, Z.a. A., and Al-Lohedan, H.A. (2018). Silver-embedded epoxy nanocomposites as organic coatings for steel. Prog. Org. Coat. 123: 209–222, https://doi.org/10.1016/j.porgcoat.2018.07.006.Search in Google Scholar

Elsayed, A., Nofal, A., and Attia, G. (2022). Development of metal oxide incorporated Al-Zn-Sn sacrificial anodes processed by stir casting and heat treatment. J. Solid State Electrochem. 26: 2659–2672, https://doi.org/10.1007/s10008-022-05251-6.Search in Google Scholar

Farooq, A., Hamza, M., Ahmed, Q., and Deen, K.M. (2019). Evaluating the performance of zinc and aluminum sacrificial anodes in artificial seawater. Electrochim. Acta 314: 135–141, https://doi.org/10.1016/j.electacta.2019.05.067.Search in Google Scholar

Ferdian, D., Pratesa, Y., Togina, I., and Adelia, I. (2017). Development of Al-Zn-Cu alloy for low voltage aluminum sacrificial anode. Procedia Eng. 184: 418–422, https://doi.org/10.1016/j.proeng.2017.04.112.Search in Google Scholar

Fredj, N., Cohendoz, S., Feaugas, X., and Touzain, S. (2011). Effect of mechanical stresses on marine organic coating ageing approached by EIS measurements. Prog. Org. Coat. 72: 260–268, https://doi.org/10.1016/j.porgcoat.2011.04.014.Search in Google Scholar

Gabelle, C., Baraud, F., Biree, L., Gouali, S., Hamdoun, H., Rousseau, C., Van Veen, E., and Leleyter, L. (2012). The impact of aluminium sacrificial anodes on the marine environment: a case study. Appl. Geochem. 27: 2088–2095, https://doi.org/10.1016/j.apgeochem.2012.07.001.Search in Google Scholar

Garza, R.E. and Lenar, J. (2011). Sacrificial anodes selected for nord stream system. Offshore 71: 122–124.Search in Google Scholar

Genesca, J., Talavera, M., Orozco, R., and Juarez-Islas, J. (2007). Electrochemical behavior of new ternary aluminum alloys as sacrificial anodes. In: Corrosion behaviour and protection of copper and aluminium alloys in seawater. Woodhead Publishing, United Kingdom, p. 159.10.1533/9781845693084.5.159Search in Google Scholar

Gudze, M. and Melchers, R. (2008). Operational based corrosion analysis in naval ships. Corros. Sci. 50: 3296–3307, https://doi.org/10.1016/j.corsci.2008.08.048.Search in Google Scholar

Gurrappa, I., Yashwanth, I., and Mounika, I. (2015). Cathodic protection technology for protection of naval structures against corrosion. Proc. Natl. Acad. Sci., India, Sect. A 85: 1–18, https://doi.org/10.1007/s40010-014-0182-0.Search in Google Scholar

He, J.-G., Wen, J.-B., Li, X.-D., Wang, G.-W., and Xu, C.-H. (2011a). Influence of Ga and Bi on electrochemical performance of Al-Zn-Sn sacrificial anodes. Trans. Nonferrous Met. Soc. China 21: 1580–1586, https://doi.org/10.1016/s1003-6326(11)60900-x.Search in Google Scholar

He, J., Wen, J., and Li, X. (2011b). Effects of precipitates on the electrochemical performance of Al sacrificial anode. Corros. Sci. 53: 1948–1953, https://doi.org/10.1016/j.corsci.2011.02.016.Search in Google Scholar

Hossen, A., Mahmud, R., Islam, A., Ahsan, S.K., and Mondal, M.I. (2023). Minimization of corrosion in aquatic environment–a review. Int. J. Hydro. 7: 9–16, https://doi.org/10.15406/ijh.2023.07.00334.Search in Google Scholar

Jawad, M.N., Amouzad Mahdiraji, G., and Hajibeigy, M.T. (2020). Performance improvement of sacrificial anode cathodic protection system for above ground storage tank. SN Appl. Sci. 2: 1–8, https://doi.org/10.1007/s42452-020-03823-7.Search in Google Scholar

Jena, G., George, R.P., and Philip, J. (2021). Fabrication of a robust graphene oxide-nano SiO2-polydimethylsiloxane composite coating on carbon steel for marine applications. Prog. Org. Coat. 161: 106462, https://doi.org/10.1016/j.porgcoat.2021.106462.Search in Google Scholar

Jinglei, Z., Keliang, S., Xiuming, H., Jiande, Y., and Shujie, P. (1990). Cathodic protection of A1 hull ship. Chin. J. Oceanol. Limnol. 8: 257–262, https://doi.org/10.1007/bf02849665.Search in Google Scholar

Juárez-Islas, J., Genesca, J., and Pérez, R. (1993). Improving the efficiency of magnesium sacrificial anodes. JOM 45: 42–44, https://doi.org/10.1007/bf03222432.Search in Google Scholar

Kamaleshwar, S., Jagadeesh Kumar, S., Naveen Kumar, K., Keerthana, S., Vaira Vignesh, R., and Padmanaban, R. (2022). Investigations on the texture, formability, and corrosion characteristics of AA3003-Y2O3 surface composite fabricated by friction stir processing. In: Vignesh, R.V., Padmanaban, R., and Govindaraju, M. (Eds.). Advances in processing of lightweight metal alloys and composites. Materials horizons: from nature to nanomaterials. Springer, India, pp. 327–348.10.1007/978-981-19-7146-4_18Search in Google Scholar

Khan, B., Rosli, M., Jahidi, H., Ishak, M.I., Zakaria, M., Jamalludin, M.R., Khor, C., Faizal, W., Rahim, W., and Nawi, M. (2017). Effect of zinc addition on the performance of aluminium alloy sacrificial anode for marine application. In: AIP conference proceedings. AIP Publishing LLC, Krabi, Thailand, 020074.10.1063/1.5002268Search in Google Scholar

Kim, J.G. and Kim, Y.W. (2001). Advanced Mg-Mn-Ca sacrificial anode materials for cathodic protection. Mater. Corros. 52: 137–139, https://doi.org/10.1002/1521-4176(200102)52:2<137::aid-maco137>3.0.co;2-3.10.1002/1521-4176(200102)52:2<137::AID-MACO137>3.0.CO;2-3Search in Google Scholar

Kittel, J., Celati, N., Keddam, M., and Takenouti, H. (2001). New methods for the study of organic coatings by EIS: new insights into attached and free films. Prog. Org. Coat. 41: 93–98, https://doi.org/10.1016/s0300-9440(00)00155-7.Search in Google Scholar

Koli, P.M., Satapathy, A.K., Ambre, G.S., and Gunasekaran, G. (2019). Eco-friendly sacrificial anode for corrosion mitigation of steel and aluminium alloy based ship hull. In: CORCON. NACE International, Mumbai.Search in Google Scholar

Kumar, A.M., Khan, A., Khan, M.Y., Suleiman, R.K., Jose, J., and Dafalla, H. (2020). Hierarchical graphitic carbon nitride-ZnO nanocomposite: viable reinforcement for the improved corrosion resistant behavior of organic coatings. Mater. Chem. Phys. 251: 122987, https://doi.org/10.1016/j.matchemphys.2020.122987.Search in Google Scholar

Kumar, B.Y., Kumar, R.L., Ramalingam, V.V., Viswanath, J.K., Harikeshava, R., and Padmanaban, R. (2022). Corrosion and tribological characteristics of fsped aluminum alloy AA5052. Trans. Marit. Sci. 11: 1–32, https://doi.org/10.7225/toms.v11.n02.w03.Search in Google Scholar

Lavrenko, V., Shvets, V., and Talash, V. (2004). Electrochemical behavior of ATsKM sacrificial anodes in the course of long-term operation on seagoing ships. Mater. Sci. 40: 687–691, https://doi.org/10.1007/s11003-005-0101-2.Search in Google Scholar

Leleyter, L., Baraud, F., Reinert, T., Gouali, S., Lemoine, M., and Gil, O. (2018). Fate of aluminium released by sacrificial anodes–Contamination of marine sediments by environmentally available compounds. C. R. Geosci. 350: 195–201, https://doi.org/10.1016/j.crte.2018.05.003.Search in Google Scholar

Lim, C.-S., Lee, H.-I., Shin, S.-B., and Baek, K.-K. (2000). Evaluation of technical feasibility on applying calcareous deposit coatings to ship ballast tanks. Corros. Rev. 18: 181–194, https://doi.org/10.1515/corrrev.2000.18.2-3.181.Search in Google Scholar

Loto, C.A., Loto, R.T., and Popoola, A.P. (2019). Cathodic protection performance evaluation of magnesium anodes on mild steel corrosion in 0.5MH2 SO4 and seawater environments. J. Bio-Tribo-Corros. 5: 1–7, https://doi.org/10.1007/s40735-019-0263-3.Search in Google Scholar

Ma, J. and Wen, J. (2009). The effects of lanthanum on microstructure and electrochemical properties of Al–Zn–In based sacrificial anode alloys. Corros. Sci. 51: 2115–2119, https://doi.org/10.1016/j.corsci.2009.05.039.Search in Google Scholar

Ma, J. and Wen, J. (2010). Corrosion analysis of Al–Zn–In–Mg–Ti–Mn sacrificial anode alloy. J. Alloys Compd. 496: 110–115, https://doi.org/10.1016/j.jallcom.2010.02.174.Search in Google Scholar

Mainier, F.B. and Perassolli, V. (2014). Ship hull corrosion caused by default and lack of maintenance on the impressed current cathodic protection. IOSR J. Eng. 4: 34–39, https://doi.org/10.9790/3021-04223439.Search in Google Scholar

Mao, A., Mahaut, M.-L., Pineau, S., Barillier, D., and Caplat, C. (2011). Assessment of sacrificial anode impact by aluminum accumulation in mussel Mytilus edulis: a large-scale laboratory test. Mar. Pollut. Bull. 62: 2707–2713, https://doi.org/10.1016/j.marpolbul.2011.09.017.Search in Google Scholar PubMed

Muazu, A., Aliyu, Y.S., Abdulwahab, M., and Idowu Popoola, A.P. (2016). Sacrificial anode stability and polarization potential variation in a ternary Al-xZn-xMg alloy in a seawater-marine environment. J. Mar. Sci. Appl. 15: 208–213, https://doi.org/10.1007/s11804-016-1356-8.Search in Google Scholar

Muralimanokar, M., Vaira, V.R., Padmanaban, R., and Suganya, P.G. (2020). Characterization of AZ31-NbC surface composite fabricated by friction stir processing. KOM–Corros Mater Protect. J. 64: 29–37, https://doi.org/10.2478/kom-2020-0005.Search in Google Scholar

Nazari, M.H., Zhang, Y., Mahmoodi, A., Xu, G., Yu, J., Wu, J., and Shi, X. (2022). Nanocomposite organic coatings for corrosion protection of metals: a review of recent advances. Prog. Org. Coat. 162: 106573, https://doi.org/10.1016/j.porgcoat.2021.106573.Search in Google Scholar

Nischay, S.S., Kamalesh, B., Abiram, A., Vignesh, R.V. and Padmanaban, R. (2022). Effect of corrosion on the tensile behavior of friction stir welded aluminum alloy AA 8011. AIP Conf. Proc. 2492: 040021.10.1063/5.0113163Search in Google Scholar

Olajire, A.A. (2018). Recent advances on organic coating system technologies for corrosion protection of offshore metallic structures. J. Mol. Liq. 269: 572–606, https://doi.org/10.1016/j.molliq.2018.08.053.Search in Google Scholar

Oryshchenko, A. and Kuzmin, Y.L. (2015). Development of electrochemical cathodic protection against corrosion of ships, vessels, and offshore structures. Inorg. Mater. Appl. Res. 6: 612–625, https://doi.org/10.1134/s207511331506012x.Search in Google Scholar

Otsuki, N., Nishida, T., Matsuoka, K., and Imafuku, K. (2015). Twenty-year tests expose steel with organic coatings in marine environments. Mater. Perform. 54: 44–48.Search in Google Scholar

Park, I.-C. and Kim, S.-J. (2020). Determination of corrosion protection current density requirement of zinc sacrificial anode for corrosion protection of AA5083-H321 in seawater. Appl. Surf. Sci. 509: 145346, https://doi.org/10.1016/j.apsusc.2020.145346.Search in Google Scholar

Pathak, S.S., Mendon, S.K., Blanton, M.D., and Rawlins, J.W. (2012). Magnesium-based sacrificial anode cathodic protection coatings (Mg-rich primers) for aluminum alloys. Metals 2: 353–376, https://doi.org/10.3390/met2030353.Search in Google Scholar

Periasamy, S.R., Ramalingam, V.V., Vijayakumar, A., Senthilkumaran, H.H., Sajja, V.T., Ramasamy, P., and Sureshkumar, S.R.K.P. (2023). Influence of friction stir processing parameters on the mechanical and corrosion Properties of Al-Cu-Li Alloy. Iran. J. Mater. Sci. Eng. 20: 1–14.Search in Google Scholar

Pourhashem, S., Ghasemy, E., Rashidi, A., and Vaezi, M.R. (2020). A review on application of carbon nanostructures as nanofiller in corrosion-resistant organic coatings. J. Coat. Technol. Res. 17: 19–55, https://doi.org/10.1007/s11998-019-00275-6.Search in Google Scholar

Prasad, N.K., Pathak, A., Kundu, S., and Mondal, K. (2018). Possibility of high phosphorus pig iron as sacrificial anode. J. Mater. Eng. Perform. 27: 3335–3349, https://doi.org/10.1007/s11665-018-3429-0.Search in Google Scholar

Pratesa, Y., Utama, A.A., Erianto, A., and Ferdian, D. (2019). Effect of silicon on corrosion behaviour of Al-Zn as a low voltage sacrificial anode for marine environment. In: IOP conference series: materials science and engineering. IOP Publishing, Bandung, Indonesia, 012056.10.1088/1757-899X/547/1/012056Search in Google Scholar

Radwan, A., Elbatran, A., Mehanna, A., and Shehadeh, M. (2017). Experimental study on using the aluminum sacrificial anode as a cathodic protection for marine structures. Int. J. Marine Envirol. Sci. 11: 73–77.Search in Google Scholar

Ramalingam, V.V., Ramasamy, P., and Datta, M. (2019). Microstructure, hardness and corrosion behaviour of friction-stir processed AA5083. Anti-Corros. Methods Mater. 66: 791–801, https://doi.org/10.1108/acmm-07-2017-1816.Search in Google Scholar

Ramalingam, V.V., Ramasamy, P., Kovukkal, M.D., and Myilsamy, G. (2020). Research and development in magnesium alloys for industrial and biomedical applications: a review. Met. Mater. Int. 26: 409–430, https://doi.org/10.1007/s12540-019-00346-8.Search in Google Scholar

Ren-Xing, W.J.-H.C., Guang-Zhang, L.G.-Z.C., Wei-Hua, W.Z.-X.G., De-Cai, Z.D.-P.Y., and Li-Qing, Z. (2009). Cathodic protection with sacrificial anode for seawater ballast tank of taizhouhai ship. J. Chin. Soc. Corros. Prot. 18: 297–301.Search in Google Scholar

Riaz, M.F., Samiuddin, M., Farooq, M., and Shah, I.A. (2022). Analysis of tafel polarization scans of magnesium-steel galvanic couple under different corrosive environments at various temperatures. Rev. Metal. 58: 220, https://doi.org/10.3989/revmetalm.220.Search in Google Scholar

Rossi, S., Bonora, P., Pasinetti, R., Benedetti, L., Draghetti, M., and Sacco, E. (1998). Laboratory and field characterization of a new sacrificial anode for cathodic protection of offshore structures. Corrosion 54: 1018–1025.10.5006/1.3284815Search in Google Scholar

Rousseau, C., Baraud, F., Leleyter, L., and Gil, O. (2009). Cathodic protection by zinc sacrificial anodes: impact on marine sediment metallic contamination. J. Hazard. Mater. 167: 953–958, https://doi.org/10.1016/j.jhazmat.2009.01.083.Search in Google Scholar PubMed

Salinas, D., Garcia, S., and Bessone, J. (1999). Influence of alloying elements and microstructure on aluminium sacrificial anode performance: case of Al–Zn. J. Appl. Electrochem. 29: 1063–1071, https://doi.org/10.1023/a:1003684219989.10.1023/A:1003684219989Search in Google Scholar

Samsonova, S., Van Steelandt, W., and De Deckere, E. (2017). The impact of sacrificial anodes and coatings of inland and marine vessels on water quality in the docks of the port of Antwerp.Search in Google Scholar

Sanmiguel-May, J.A., López-Alcantara, R., Juárez-Arellano, E.A., Pérez-Quiroz, J.T., Contreras, A., and Pérez-López, T. (2021). Performance assessment of magnesium anodes manufactured by sintering process. Metals 11: 406, https://doi.org/10.3390/met11030406.Search in Google Scholar

Sathiyanarayanan, S., Jeyaram, R., Muthukrishnan, S., and Venkatachari, G. (2009). Corrosion protection mechanism of polyaniline blended organic coating on steel. J. Electrochem. Soc. 156: C127, https://doi.org/10.1149/1.3073874.Search in Google Scholar

Seymour, A.J. (1990). Cathodic protection for corrosion control of ships and other steel structures in seawater. Anti-Corros. Methods Mater. 37: 4–7.10.1108/eb007268Search in Google Scholar

Shehadeh, M. and Hassan, I. (2013). Study of sacrificial cathodic protection on marine structures in sea and fresh water in relation to flow conditions. Sh. Offshore Struct. 8: 102–110, https://doi.org/10.1080/17445302.2011.590694.Search in Google Scholar

Shibli, S., Archana, S., and Ashraf, P.M. (2008). Development of nano cerium oxide incorporated aluminium alloy sacrificial anode for marine applications. Corros. Sci. 50: 2232–2238, https://doi.org/10.1016/j.corsci.2008.06.017.Search in Google Scholar

Shibli, S. and Binoj, K. (2009). Development of MnO2-incorporated high performance aluminum alloy matrix sacrificial anodes. J. Appl. Electrochem. 39: 159–166, https://doi.org/10.1007/s10800-008-9659-3.Search in Google Scholar

Shibli, S.M.A. and George, S. (2007). Electrochemical impedance spectroscopic analysis of activation of Al–Zn alloy sacrificial anode by RuO2 catalytic coating. Appl. Surf. Sci. 253: 7510–7515, https://doi.org/10.1016/j.apsusc.2007.03.052.Search in Google Scholar

Shibli, S.M.A. and Gireesh, V.S. (2003). Surface activation of aluminium alloy sacrificial anodes by IrO2. Appl. Surf. Sci. 219: 203–210, https://doi.org/10.1016/s0169-4332(03)00675-5.Search in Google Scholar

Shibli, S.M.A., Jabeera, B., and Manu, R. (2007). Development of high performance aluminium alloy sacrificial anodes reinforced with metal oxides. Mater. Lett. 61: 3000–3004, https://doi.org/10.1016/j.matlet.2006.10.062.Search in Google Scholar

Sina, H., Emamy, M., Saremi, M., Keyvani, A., Mahta, M., and Campbell, J. (2006). The influence of Ti and Zr on electrochemical properties of aluminum sacrificial anodes. Mater. Sci. Eng.: A 431: 263–276, https://doi.org/10.1016/j.msea.2006.06.011.Search in Google Scholar

Son, Y.-T., Lee, M.-H., and Lee, H.-J. (2007). Study of practical cathodic protection of 2nd class stainless steel shaft by means of Al sacrificial anode. J. Korea Ship Safty Technol. Author. 22: 34–53.Search in Google Scholar

Song, G.-L. and Feng, Z. (2020). Modification, degradation and evaluation of a few organic coatings for some marine applications. Corros. Mater. Degrad. 1: 408–442, https://doi.org/10.3390/cmd1030019.Search in Google Scholar

Song, J., She, J., Chen, D., and Pan, F. (2020). Latest research advances on magnesium and magnesium alloys worldwide. J. Magnesium Alloys 8: 1–41, https://doi.org/10.1016/j.jma.2020.02.003.Search in Google Scholar

Sperandio, G., Santos, C., and Galdino, A. (2021). Influence of silicon on the corrosion behavior of Al–Zn–In sacrificial anode. J. Mater. Res. Technol. 15: 614–622, https://doi.org/10.1016/j.jmrt.2021.08.033.Search in Google Scholar

Sun, H., Liu, L., Li, Y., Ma, L., and Yan, Y. (2013). The performance of Al–Zn–In–Mg–Ti sacrificial anode in simulated deep water environment. Corros. Sci. 77: 77–87, https://doi.org/10.1016/j.corsci.2013.07.029.Search in Google Scholar

Szabo, S. and Bakos, I. (2006). Cathodic protection with sacrificial anodes. Corros. Rev. 24: 231–280, https://doi.org/10.1515/corrrev.2006.24.3-4.231.Search in Google Scholar

Talavera, M., Valdez, S., Juarez-Islas, J., Mena, B., and Genesca, J. (2002). EIS testing of new aluminium sacrificial anodes. J. Appl. Electrochem. 32: 897–903, https://doi.org/10.1023/a:1020547508321.10.1023/A:1020547508321Search in Google Scholar

Tamhane, D., Banerjee, S., and Tallur, S. (2022). Monitoring corrosion in sacrificial anodes with pulsed eddy current and electromechanical impedance: a comparative analysis. IEEE Sens. J. 22: 8147–8154, https://doi.org/10.1109/jsen.2022.3157646.Search in Google Scholar

Tang, D., Du, Y., Li, X., Liang, Y., and Lu, M. (2016). Effect of alternating current on the performance of magnesium sacrificial anode. Mater. Des. 93: 133–145, https://doi.org/10.1016/j.matdes.2015.12.112.Search in Google Scholar

Thomas, D., Philip, E., Sindhu, R., Ulaeto, S.B., Pugazhendhi, A., and Awasthi, M.K. (2022). Developments in smart organic coatings for anticorrosion applications: a review. Biomass Convers. Biorefinery. 12: 4683–4699, https://doi.org/10.1007/s13399-022-02363-x.Search in Google Scholar

Touzain, S., Le Thu, Q., and Bonnet, G. (2005). Evaluation of thick organic coatings degradation in seawater using cathodic protection and thermally accelerated tests. Prog. Org. Coat. 52: 311–319, https://doi.org/10.1016/j.porgcoat.2004.09.007.Search in Google Scholar

Umoru, L. and Ige, O. (2007). Effects of tin on aluminum–zinc–magnesium alloy as sacrificial anode in seawater. J. Miner. Mater. Charact. Eng. 7: 105–113, https://doi.org/10.4236/jmmce.2008.72009.Search in Google Scholar

Vaira Vignesh, R., Padmanaban, R., and Datta, M. (2018). Influence of FSP on the microstructure, microhardness, intergranular corrosion susceptibility and wear resistance of AA5083 alloy. Tribol.-Mater., Surf. Interfaces 12: 157–169, https://doi.org/10.1080/17515831.2018.1483295.Search in Google Scholar

Vaira Vignesh, R., Padmanaban, R., Govindaraju, M., and Suganya Priyadharshini, G. (2019a). Investigations on the corrosion behaviour and biocompatibility of magnesium alloy surface composites AZ91D-ZrO2 fabricated by friction stir processing. Trans. IMF 97: 261–270, https://doi.org/10.1080/00202967.2019.1648005.Search in Google Scholar

Vaira Vignesh, R., Padmanaban, R., Govindaraju, M., and Suganya Priyadharshini, G. (2019b). Mechanical properties and corrosion behaviour of AZ91D-HAP surface composites fabricated by friction stir processing. Mater. Res. Express 6: 085401, https://doi.org/10.1088/2053-1591/ab1ded.Search in Google Scholar

Valdez, S., Mena, B., Juarez-Islas, J., and Genesca, J. (2001). Evaluation of an Al-Zn-Mg-Li alloy/potential candidate as Al-sacrificial anode. J. Mater. Eng. Perform. 10: 596–601, https://doi.org/10.1361/105994901770344755.Search in Google Scholar

Vignesh, R.V., Padmanaban, R., Govindaraju, M., and Priyadharshini, G.S. (2020). Corrosion protection of magnesium alloys in simulated body fluids using nanophase Al2O3. In: Susai Rajendran, S., Nguyen, T.A.N.H., Kakooei, S., Yeganeh, M., and Li, Y. (Eds.). Corrosion protection at the nanoscale. micro and nano technologies. Elsevier, United States of America, pp. 21–45.10.1016/B978-0-12-819359-4.00003-9Search in Google Scholar

Wagner, P., Little, B., Hart, K., Ray, R., Thomas, D., Trzaskoma-Paulette, P., and Lucas, K. (1996). Environmental fate of sacrificial zinc anodes and influence of a biofilm. Int. Biodeterior. Biodegrad. 37: 151–157, https://doi.org/10.1016/0964-8305(96)84358-7.Search in Google Scholar

Wang, H., Du, M., Liang, H., and Gao, Q. (2019). Study on Al-Zn-in alloy as sacrificial anodes in seawater environment. J. Ocean Univ. China 18: 889–895, https://doi.org/10.1007/s11802-019-3788-7.Search in Google Scholar

Wen, C.-C., Tsai, H.-J., Hsu, S.-Y., and Yeh, H.-C. (2020). Environmental impact assessment of sacrificial anode method in Taiwan strait. J. Environ. Prot. 11: 622–635, https://doi.org/10.4236/jep.2020.118037.Search in Google Scholar

Wen, J., He, J., and Lu, X. (2011). Influence of silicon on the corrosion behaviour of Al–Zn–In–Mg–Ti sacrificial anode. Corros. Sci. 53: 3861–3865, https://doi.org/10.1016/j.corsci.2011.07.039.Search in Google Scholar

Xi, Y., Jia, M., Zhang, J., Zhang, W., Yang, D., and Sun, L. (2022). Evaluating the performance of aluminum sacrificial anodes with different concentration of gallium in artificial sea water. Coatings 12: 53, https://doi.org/10.3390/coatings12010053.Search in Google Scholar

Xu, L., Xin, Y., Ma, L., Zhang, H., Lin, Z., and Li, X. (2021). Challenges and solutions of cathodic protection for marine ships. Corros. Commun. 2: 33–40, https://doi.org/10.1016/j.corcom.2021.08.003.Search in Google Scholar

Yang, H.-Q., Zhang, Q., Li, Y.-M., Liu, G., and Huang, Y. (2021). Effects of mechanical stress and cathodic protection on the performance of a marine organic coating on mild steel. Mater. Chem. Phys. 261: 124233, https://doi.org/10.1016/j.matchemphys.2021.124233.Search in Google Scholar

Yang, M., Kainuma, S., Ishihara, S., Kaneko, A., and Yamauchi, T. (2020). Atmospheric corrosion protection method for corroded steel members using sacrificial anode of Al-based alloy. Constr. Build. Mater. 234: 117405, https://doi.org/10.1016/j.conbuildmat.2019.117405.Search in Google Scholar

Yaro, A., Hameed, K., and Khadom, A. (2013). Study for prevention of steel corrosion by sacrificial anode cathodic protection. Theor. Found. Chem. Eng. 47: 266–273, https://doi.org/10.1134/s0040579513030147.Search in Google Scholar

Yuasa, M., Huang, X., Suzuki, K., Mabuchi, M., and Chino, Y. (2015). Discharge properties of Mg–Al–Mn–Ca and Mg–Al–Mn alloys as anode materials for primary magnesium–air batteries. J. Power Sources 297: 449–456, https://doi.org/10.1016/j.jpowsour.2015.08.042.Search in Google Scholar

Zazoua, A. and Azzouz, N. (2008). An investigation on the use of indium to increase dissolution of AlZn anodes in sea water. Mater. Des. 29: 806–810, https://doi.org/10.1016/j.matdes.2007.01.010.Search in Google Scholar

Zhang, X., Du, C., Liu, Z., and Liu, K. (2021). The influence of temperature and dissolved oxygen on the electrochemical properties of three Al-Zn-In series sacrificial anodes. Int. J. Electrochem. Sci. 16, https://doi.org/10.20964/2021.04.02.Search in Google Scholar

Zhang, Z., Wu, J., Zhao, X., Zhang, Y., Wu, Y., Su, T., and Deng, H. (2020). Life evaluation of organic coatings on hydraulic metal structures. Prog. Org. Coat. 148: 105848, https://doi.org/10.1016/j.porgcoat.2020.105848.Search in Google Scholar

Zidane, N., Albrimi, Y.A., Addi, A.A., Douch, J., Souto, R., and Hamdani, M. (2018). Evaluation of the corrosion of AZ31 magnesium alloy used as sacrificial anode for cathodic protection of hot-water tank storage containing chloride. Int. J. Electrochem. Sci. 13: 29–44, https://doi.org/10.20964/2018.01.36.Search in Google Scholar

Λιόντος, Κ.-Π.Α. (2021). Aluminum based sacrificial anodes: composition and electrochemical performance.Search in Google Scholar

Received: 2023-08-01
Accepted: 2023-11-25
Published Online: 2024-03-11

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 1.5.2024 from https://www.degruyter.com/document/doi/10.1515/corrrev-2023-0099/html
Scroll to top button