Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 15, 2015

Study strategies for long non-coding RNAs and their roles in regulating gene expression

  • Dan Qin and Cunshuan Xu EMAIL logo

Abstract

Long non-coding RNAs (lncRNAs) have attracted considerable attention recently due to their involvement in numerous key cellular processes and in the development of various disorders. New high-throughput methods enable their study on a genome-wide scale. Numerous lncRNAs have been identified and characterized as important members of the biological regulatory network, with significant roles in regulating gene expression at the epigenetic, transcriptional and post-transcriptional levels. This paper summarizes the diverse mechanisms of action of these lncRNAs and looks at the study strategies in this field. A major challenge in future study is to establish more effective bioinformatics and experimental methods to explore the functions, detailed mechanisms of action and structures deciding the functional diversity of lncRNAs, since the vast majority remain unresolved.

References

1. Taft, R.J., Pheasant, M. and Mattick, J.S. The relationship between nonprotein- coding DNA and eukaryotic complexity. Bioessays 29 (2007) 288-299. DOI: 10.1002/bies.20544.10.1002/bies.20544Search in Google Scholar PubMed

2. Zhang, K., Shi, Z.M., Chang, Y.N., Hu, Z.M., Qi, H.X. and Hong, W. The ways of action of long non-coding RNAs in cytoplasm and nucleus. Gene 547 (2014) 1-9. DOI: 10.1016/ j.gene.2014.06.043.Search in Google Scholar

3. Deng, G. and Sui, G. Noncoding RNA in oncogenesis: a new era of identifying key players. Int. J. Mol. Sci. 14 (2013) 18319-18349. DOI: 10.3390/ijms140918319.10.3390/ijms140918319Search in Google Scholar PubMed PubMed Central

4. Brown, C.J., Ballabio, A., Rupert, J.L., Lafreniere, R.G., Grompe, M., Tonlorenzi, R. and Willard, H.F. A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature 349 (1991) 38-44. DOI: 10.1038/349038a0.10.1038/349038a0Search in Google Scholar PubMed

5. Lee, C. and Kikyo, N. Strategies to identify long noncoding RNAs involved in gene regulation. Cell Biosci. 2 (2012) 37. DOI: 10.1186/2045-3701-2-37.10.1186/2045-3701-2-37Search in Google Scholar PubMed PubMed Central

6. Okazaki, Y., Furuno, M., Kasukawa, T., Adachi, J., Bono, H., Kondo, S., Nikaido, I., Osato, N., Saito, R., Suzuki, H., Yamanaka, I., Kiyosawa, H., Yagi, K., Tomaru, Y., Hasegawa, Y., Nogami, A., Schonbach, C., Gojobori, T., Baldarelli, R., Hill, D.P., Bult, C., Hume, D.A., Quackenbush, J., Schriml, L.M., Kanapin, A., Matsuda, H., Batalov, S., Beisel, K.W., Blake, J.A., Bradt, D., Brusic, V., Chothia, C., Corbani, L.E., Cousins, S., Dalla, E., Dragani, T.A., Fletcher, C.F., Forrest, A., Frazer, K.S., Gaasterland, T., Gariboldi, M., Gissi, C., Godzik, A., Gough, J., Grimmond, S., Gustincich, S., Hirokawa, N., Jackson, I.J., Jarvis, E.D., Kanai, A., Kawaji, H., Kawasawa, Y., Kedzierski, R.M., King, B.L., Konagaya, A., Kurochkin, I.V., Lee, Y., Lenhard, B., Lyons, P.A., Maglott, D.R., Maltais, L., Marchionni, L., McKenzie, L., Miki, H., Nagashima, T., Numata, K., Okido, T., Pavan, W.J., Pertea, G., Pesole, G., Petrovsky, N., Pillai, R., Pontius, J.U., Qi, D., Ramachandran, S., Ravasi, T., Reed, J.C., Reed, D.J., Reid, J., Ring, B.Z., Ringwald, M., Sandelin, A., Schneider, C., Semple, C.A., Setou, M., Shimada, K., Sultana, R., Takenaka, Y., Taylor, M.S., Teasdale, R.D., Tomita, M., Verardo, R., Wagner, L., Wahlestedt, C., Wang, Y., Watanabe, Y., Wells, C., Wilming, L.G., Wynshaw-Boris, A., Yanagisawa, M., Yang, I., Yang, L., Yuan, Z., Zavolan, M., Zhu, Y., Zimmer, A., Carninci, P., Hayatsu, N., Hirozane-Kishikawa, T., Konno, H., Nakamura, M., Sakazume, N., Sato, K., Shiraki, T., Waki, K., Kawai, J., Aizawa, K., Arakawa, T., Fukuda, S., Hara, A., Hashizume, W., Imotani, K., Ishii, Y., Itoh, M., Kagawa, I., Miyazaki, A., Sakai, K., Sasaki, D., Shibata, K., Shinagawa, A., Yasunishi, A., Yoshino, M., Waterston, R., Lander, E.S., Rogers, J., Birney, E. and Hayashizaki, Y. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature 420 (2002) 563-573. DOI: 10.1038/nature01266.10.1038/nature01266Search in Google Scholar PubMed

7. Amaral, P.P. and Mattick, J.S. Noncoding RNA in development. Mamm. Genome 19 (2008) 454-492. DOI: 10.1007/s00335-008-9136-7.10.1007/s00335-008-9136-7Search in Google Scholar PubMed

8. Tan, L., Yu, J.T., Hu, N. and Tan, L. Non-coding RNAs in Alzheimer's disease. Mol. Neurobiol. 47 (2013) 382-393. DOI: 10.1007/s12035-012-8359-5.10.1007/s12035-012-8359-5Search in Google Scholar PubMed

9. Vausort, M., Wagner, D.R. and Devaux, Y. Long noncoding RNAs in patients with acute myocardial infarction. Circ. Res. 115 (2014) 668-677. DOI: 10.1161/CIRCRESAHA.115. 303836.Search in Google Scholar

10. Zhao, W., Luo, J. and Jiao, S. Comprehensive characterization of cancer subtype associated long non-coding RNAs and their clinical implications. Sci. Rep. 4 (2014) 6591. DOI: 10.1038/ srep06591.Search in Google Scholar

11. Quek, X.C., Thomson, D.W., Maag, J.L., Bartonicek, N., Signal, B., Clark, M.B., Gloss, B.S. and Dinger, M.E. lncRNAdb v2.0: expanding the reference database for functional long noncoding RNAs. Nucleic Acids Res. 43 (2014) D168-D173. DOI: 10.1093/nar/gku988.10.1093/nar/gku988Search in Google Scholar PubMed PubMed Central

12. Song, X., Cao, G., Jing, L., Lin, S., Wang, X., Zhang, J., Wang, M., Liu, W. and Lv, C. Analysing the relationship between lncRNA and protein-coding gene and the role of lncRNA as ceRNA in pulmonary fibrosis. J. Cell Mol. Med. 18 (2014) 991-1003. DOI: 10.1111/ jcmm.12243.Search in Google Scholar

13. Loewer, S., Cabili, M.N., Guttman, M., Loh, Y.H., Thomas, K., Park, I.H., Garber, M., Curran, M., Onder, T., Agarwal, S., Manos, P.D., Datta, S., Lander, E.S., Schlaeger, T.M., Daley, G.Q. and Rinn, J.L. Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat. Genet. 42 (2010) 1113-1117. DOI: 10.1038/ng.710. 10.1038/ng.710Search in Google Scholar PubMed PubMed Central

14. Wang, Y., Xu, Z., Jiang, J., Xu, C., Kang, J., Xiao, L., Wu, M., Xiong, J., Guo, X. and Liu, H. Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. Dev. Cell 25 (2013) 69-80. DOI: 10.1016/j.devcel. 2013.03.002.Search in Google Scholar

15. Ponting, C.P., Oliver, P.L. and Reik, W. Evolution and functions of long noncoding RNAs. Cell 136 (2009) 629-641. DOI: 10.1016/ j.cell.2009.02.006.Search in Google Scholar

16. Zhu, J., Fu, H., Wu, Y. and Zheng, X. Function of lncRNAs and approaches to lncRNA-protein interactions. Sci. China Life Sci. 56 (2013) 876-885. DOI: 10.1007/s11427 -013-4553-6.Search in Google Scholar

17. Lepoivre, C., Belhocine, M., Bergon, A., Griffon, A., Yammine, M., Vanhille, L., Zacarias-Cabeza, J., Garibal, M.A., Koch, F., Maqbool, M.A., Fenouil, R., Loriod, B., Holota, H., Gut, M., Gut, I., Imbert, J., Andrau, J.C., Puthier, D. and Spicuglia, S. Divergent transcription is associated with promoters of transcriptional regulators. BMC Genomics 14 (2013) 914. DOI: 10.1186/1471-2164-14-914.10.1186/1471-2164-14-914Search in Google Scholar PubMed PubMed Central

18. Ni, T., Tu, K., Wang, Z., Song, S., Wu, H., Xie, B., Scott, K.C., Grewal, S.I., Gao, Y. and Zhu, J. The prevalence and regulation of antisense transcripts in Schizosaccharomyces pombe. PLoS One 5 (2010) e15271. DOI: 10.1371/journal.pone.0015271.10.1371/journal.pone.0015271Search in Google Scholar PubMed PubMed Central

19. Rhind, N., Chen, Z., Yassour, M., Thompson, D.A., Haas, B.J., Habib, N., Wapinski, I., Roy, S., Lin, M.F., Heiman, D.I., Young, S.K., Furuya, K., Guo, Y., Pidoux, A., Chen, H.M., Robbertse, B., Goldberg, J.M., Aoki, K., Bayne, E.H., Berlin, A.M., Desjardins, C.A., Dobbs, E., Dukaj, L., Fan, L., FitzGerald, M.G., French, C., Gujja, S., Hansen, K., Keifenheim, D., Levin, J.Z., Mosher, R.A., Muller, C.A., Pfiffner, J., Priest, M., Russ, C., Smialowska, A., Swoboda, P., Sykes, S.M., Vaughn, M., Vengrova, S., Yoder, R., Zeng, Q., Allshire, R., Baulcombe, D., Birren, B.W., Brown, W., Ekwall, K., Kellis, M., Leatherwood, J., Levin, H., Margalit, H., Martienssen, R., Nieduszynski, C.A., Spatafora, J.W., Friedman, N., Dalgaard, J.Z., Baumann, P., Niki, H., Regev, A. and Nusbaum, C. Comparative functional genomics of the fission yeasts. Science 332 (2011) 930-936. DOI: 10.1126/science.1203357.10.1126/science.1203357Search in Google Scholar PubMed PubMed Central

20. Xu, Z., Wei, W., Gagneur, J., Clauder-Munster, S., Smolik, M., Huber, W. and Steinmetz, L.M. Antisense expression increases gene expression variability and locus interdependency. Mol. Syst. Biol. 7 (2011) 468. DOI: 10.1038/msb.2011.1.10.1038/msb.2011.1Search in Google Scholar PubMed PubMed Central

21. Berteaux, N., Aptel, N., Cathala, G., Genton, C., Coll, J., Daccache, A., Spruyt, N., Hondermarck, H., Dugimont, T., Curgy, J.J., Forne, T. and Adriaenssens, E. A novel H19 antisense RNA overexpressed in breast cancer contributes to paternal IGF2 expression. Mol. Cell Biol. 28 (2008) 6731-6745. DOI: 10.1128/mcb.02103-07.10.1128/MCB.02103-07Search in Google Scholar PubMed PubMed Central

22. Atkinson, S.R., Marguerat, S. and Bahler, J. Exploring long non-coding RNAs through sequencing. Semin. Cell Dev. Biol. 23 (2012) 200-205. DOI: 10.1016/j.semcdb.2011.12.003. 10.1016/j.semcdb.2011.12.003Search in Google Scholar PubMed

23. Schaukowitch, K. and Kim, T.K. Emerging epigenetic mechanisms of long non-coding RNAs. Neuroscience 264 (2014) 25-38. DOI: 10.1016/j.neuroscience.2013.12.009.10.1016/j.neuroscience.2013.12.009Search in Google Scholar PubMed PubMed Central

24. De Santa, F., Barozzi, I., Mietton, F., Ghisletti, S., Polletti, S., Tusi, B.K., Muller, H., Ragoussis, J., Wei, C.L. and Natoli, G. A large fraction of extragenic RNA pol II transcription sites overlap enhancers. PLoS Biol. 8 (2010) e1000384. DOI: 10.1371/journal.pbio.1000384.10.1371/journal.pbio.1000384Search in Google Scholar PubMed PubMed Central

25. Licastro, D., Gennarino, V.A., Petrera, F., Sanges, R., Banfi, S. and Stupka, E. Promiscuity of enhancer, coding and non-coding transcription functions in ultraconserved elements. BMC Genomics 11 (2010) 151. DOI: 10.1186/1471-2164-11-151.10.1186/1471-2164-11-151Search in Google Scholar PubMed PubMed Central

26. Mercer, T.R., Dinger, M.E. and Mattick, J.S. Long non-coding RNAs: insights into functions. Nat. Rev. Genet. 10 (2009) 155-159. DOI: 10.1038/nrg2521.10.1038/nrg2521Search in Google Scholar PubMed

27. St Laurent, G., Shtokalo, D., Tackett, M.R., Yang, Z., Eremina, T., Wahlestedt, C., Urcuqui-Inchima, S., Seilheimer, B., McCaffrey, T.A. and Kapranov, P. Intronic RNAs constitute the major fraction of the non-coding RNA in mammalian cells. BMC Genomics 13 (2012) 504. DOI: 10.1186/1471-2164-13-504.10.1186/1471-2164-13-504Search in Google Scholar PubMed PubMed Central

28. Tahira, A.C., Kubrusly, M.S., Faria, M.F., Dazzani, B., Fonseca, R.S., Maracaja-Coutinho, V., Verjovski-Almeida, S., Machado, M.C. and Reis, E.M. Long noncoding intronic RNAs are differentially expressed in primary and metastatic pancreatic cancer. Mol. Cancer 10 (2011) 141. DOI: 10.1186/1476-4598-10-141.10.1186/1476-4598-10-141Search in Google Scholar PubMed PubMed Central

29. Wang, K.C. and Chang, H.Y. Molecular mechanisms of long noncoding RNAs. Mol. Cell 43 (2011) 904-914. DOI: 10.1016/j.molcel.2011.08.018.10.1016/j.molcel.2011.08.018Search in Google Scholar PubMed PubMed Central

30. Guttman, M., Amit, I., Garber, M., French, C., Lin, M.F., Feldser, D., Huarte, M., Zuk, O., Carey, B.W., Cassady, J.P., Cabili, M.N., Jaenisch, R., Mikkelsen, T.S., Jacks, T., Hacohen, N., Bernstein, B.E., Kellis, M., Regev, A., Rinn, J.L. and Lander, E.S. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458 (2009) 223-227. DOI: 10.1038/nature07672.10.1038/nature07672Search in Google Scholar PubMed PubMed Central

31. Ponjavic, J., Oliver, P.L., Lunter, G. and Ponting, C.P. Genomic and transcriptional co-localization of protein-coding and long non-coding RNA pairs in the developing brain. PLoS Genet. 5 (2009) e1000617. DOI: 10.1371/journal.pgen.1000617.10.1371/journal.pgen.1000617Search in Google Scholar PubMed PubMed Central

32. Kapranov, P., Cheng, J., Dike, S., Nix, D.A., Duttagupta, R., Willingham, A.T., Stadler, P.F., Hertel, J., Hackermuller, J., Hofacker, I.L., Bell, I., Cheung, E., Drenkow, J., Dumais, E., Patel, S., Helt, G., Ganesh, M., Ghosh, S., Piccolboni, A., Sementchenko, V., Tammana, H. and Gingeras, T.R. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316 (2007) 1484-1488. DOI: 10.1126/science.1138341. 10.1126/science.1138341Search in Google Scholar PubMed

33. Wu, Z., Liu, X., Liu, L., Deng, H., Zhang, J., Xu, Q., Cen, B. and Ji, A. Regulation of lncRNA expression. Cell. Mol. Biol. Lett. 19 (2014) 561-575. DOI: 10.2478/s11658-014-0212-6.10.2478/s11658-014-0212-6Search in Google Scholar PubMed PubMed Central

34. Caley, D.P., Pink, R.C., Trujillano, D. and Carter, D.R. Long noncoding RNAs, chromatin, and development. ScientificWorldJournal 10 (2010) 90-102. DOI: 10.1100/tsw.2010.7.10.1100/tsw.2010.7Search in Google Scholar PubMed PubMed Central

35. Huang, W., Long, N. and Khatib, H. Genome-wide identification and initial characterization of bovine long non-coding RNAs from EST data. Anim. Genet. 43 (2012) 674-682. DOI: 10.1111/j.1365-2052.2012.02325.x.10.1111/j.1365-2052.2012.02325.xSearch in Google Scholar PubMed

36. Sigova, A.A., Mullen, A.C., Molinie, B., Gupta, S., Orlando, D.A., Guenther, M.G., Almada, A.E., Lin, C., Sharp, P.A., Giallourakis, C.C. and Young, R.A. Divergent transcription of long noncoding RNA/mRNA gene pairs in embryonic stem cells. Proc. Natl. Acad. Sci. USA 110 (2013) 2876-2881. DOI: 10.1073/pnas.1221904110.10.1073/pnas.1221904110Search in Google Scholar PubMed PubMed Central

37. Lasda, E. and Parker, R. Circular RNAs: diversity of form and function. RNA 20 (2014) 1829-1842. DOI: 10.1261/rna.047126.114.10.1261/rna.047126.114Search in Google Scholar PubMed PubMed Central

38. Lipovich, L., Johnson, R. and Lin, C.Y. MacroRNA underdogs in a microRNA world: evolutionary, regulatory, and biomedical significance of mammalian long non-protein-coding RNA. Biochim. Biophys. Acta 1799 (2010) 597-615. DOI: 10.1016/j.bbagrm.2010.10.001.10.1016/j.bbagrm.2010.10.001Search in Google Scholar PubMed

39. Guttman, M. and Rinn, J.L. Modular regulatory principles of large noncoding RNAs. Nature 482 (2012) 339-346. DOI: 10.1038/nature10887.10.1038/nature10887Search in Google Scholar PubMed PubMed Central

40. Hasegawa, Y., Brockdorff, N., Kawano, S., Tsutui, K., Tsutui, K. and Nakagawa, S. The matrix protein hnRNP U is required for chromosomal localization of Xist RNA. Dev. Cell 19 (2010) 469-476. DOI: 10.1016/j.devcel.2010.08.006.10.1016/j.devcel.2010.08.006Search in Google Scholar PubMed

41. Novikova, I.V., Hennelly, S.P. and Sanbonmatsu, K.Y. Tackling structures of long noncoding RNAs. Int. J. Mol. Sci. 14 (2013) 23672-23684. DOI: 10.3390/ijms141223672.10.3390/ijms141223672Search in Google Scholar PubMed PubMed Central

42. Rinn, J.L., Kertesz, M., Wang, J.K., Squazzo, S.L., Xu, X., Brugmann, S.A., Goodnough, L.H., Helms, J.A., Farnham, P.J., Segal, E. and Chang, H.Y. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129 (2007) 1311-1323. DOI: 10.1016/j.cell.2007.05.022.10.1016/j.cell.2007.05.022Search in Google Scholar PubMed PubMed Central

43. Tsai, M.C., Manor, O., Wan, Y., Mosammaparast, N., Wang, J.K., Lan, F., Shi, Y., Segal, E. and Chang, H.Y. Long noncoding RNA as modular scaffold of histone modification complexes. Science 329 (2010) 689-693. DOI: 10.1126/science.1192002.10.1126/science.1192002Search in Google Scholar PubMed PubMed Central

44. Froberg, J.E., Yang, L. and Lee, J.T. Guided by RNAs: X-inactivation as a model for lncRNA function. J. Mol. Biol. 425 (2013) 3698-3706. DOI: 10.1016/j.jmb.2013.06.031.10.1016/j.jmb.2013.06.031Search in Google Scholar PubMed PubMed Central

45. Robbins, K.M., Chen, Z., Wells, K.D. and Rivera, R.M. Expression of KCNQ1OT1, CDKN1C, H19, and PLAGL1 and the methylation patterns at the KvDMR1 and H19/IGF2 imprinting control regions is conserved between human and bovine. J. Biomed. Sci. 19 (2012) 95. DOI: 10.1186/1423-0127-19-95.10.1186/1423-0127-19-95Search in Google Scholar PubMed PubMed Central

46. Martianov, I., Ramadass, A., Serra Barros, A., Chow, N. and Akoulitchev, A. Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature 445 (2007) 666-670. DOI: 10.1038/nature05519.10.1038/nature05519Search in Google Scholar PubMed

47. Ohno, M., Fukagawa, T., Lee, J.S. and Ikemura, T. Triplex-forming DNAs in the human interphase nucleus visualized in situ by polypurine/polypyrimidine DNA probes and antitriplex antibodies. Chromosoma 111 (2002) 201-213. DOI: 10.1007/s00412-002-0198-0.10.1007/s00412-002-0198-0Search in Google Scholar PubMed

48. Kino, T., Hurt, D.E., Ichijo, T., Nader, N. and Chrousos, G.P. Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci. Signal. 3 (2010) ra8. DOI: 10.1126/scisignal.2000568.10.1126/scisignal.2000568Search in Google Scholar PubMed PubMed Central

49. Mariner, P.D., Walters, R.D., Espinoza, C.A., Drullinger, L.F., Wagner, S.D., Kugel, J.F. and Goodrich, J.A. Human Alu RNA is a modular transacting repressor of mRNA transcription during heat shock. Mol. Cell 29 (2008) 499-509. DOI: 10.1016/j.molcel.2007.12.013.10.1016/j.molcel.2007.12.013Search in Google Scholar PubMed

50. Tsao, H.W., Tai, T.S., Tseng, W., Chang, H.H., Grenningloh, R., Miaw, S.C. and Ho, I.C. Ets-1 facilitates nuclear entry of NFAT proteins and their recruitment to the IL-2 promoter. Proc. Natl. Acad. Sci. USA 110 (2013) 15776-15781. DOI: 10.1073/pnas.1304343110.10.1073/pnas.1304343110Search in Google Scholar PubMed PubMed Central

51. Bickel, K.S. and Morris, D.R. Silencing the transcriptome's dark matter: mechanisms for suppressing translation of intergenic transcripts. Mol. Cell 22 (2006) 309-316. DOI: 10.1016/ j.molcel.2006.04.010.Search in Google Scholar

52. Hirota, K., Miyoshi, T., Kugou, K., Hoffman, C.S., Shibata, T. and Ohta, K. Stepwise chromatin remodelling by a cascade of transcription initiation of non-coding RNAs. Nature 456 (2008) 130-134. DOI: 10.1038/nature07348.10.1038/nature07348Search in Google Scholar PubMed

53. Martens, J.A., Wu, P.Y. and Winston, F. Regulation of an intergenic transcript controls adjacent gene transcription in Saccharomyces cerevisiae. Genes Dev. 19 (2005) 2695-2704. DOI: 10.1101/gad.1367605.10.1101/gad.1367605Search in Google Scholar PubMed PubMed Central

54. Yan, M.D., Hong, C.C., Lai, G.M., Cheng, A.L., Lin, Y.W. and Chuang, S.E. Identification and characterization of a novel gene Saf transcribed from the opposite strand of Fas. Hum. Mol. Genet. 14 (2005) 1465-1474. DOI: 10.1093/hmg/ddi156.10.1093/hmg/ddi156Search in Google Scholar PubMed

55. Harrow, J., Frankish, A., Gonzalez, J.M., Tapanari, E., Diekhans, M., Kokocinski, F., Aken, B.L., Barrell, D., Zadissa, A., Searle, S., Barnes, I., Bignell, A., Boychenko, V., Hunt, T., Kay, M., Mukherjee, G., Rajan, J., Despacio-Reyes, G., Saunders, G., Steward, C., Harte, R., Lin, M., Howald, C., Tanzer, A., Derrien, T., Chrast, J., Walters, N., Balasubramanian, S., Pei, B., Tress, M., Rodriguez, J.M., Ezkurdia, I., van Baren, J., Brent, M., Haussler, D., Kellis, M., Valencia, A., Reymond, A., Gerstein, M., Guigo, R. and Hubbard, T.J. GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res. 22 (2012) 1760-1774. DOI: 10.1101/gr.135350.111.10.1101/gr.135350.111Search in Google Scholar PubMed PubMed Central

56. Jalali, S., Jayaraj, G.G. and Scaria, V. Integrative transcriptome analysis suggest processing of a subset of long non-coding RNAs to small RNAs. Biol. Direct 7 (2012) 25. DOI: 10.1186 /1745-6150-7-25.Search in Google Scholar

57. Lau, N.C., Seto, A.G., Kim, J., Kuramochi-Miyagawa, S., Nakano, T., Bartel, D.P. and Kingston, R.E. Characterization of the piRNA complex from rat testes. Science 313 (2006) 363-367. DOI: 10.1126/science.1130164.10.1126/science.1130164Search in Google Scholar PubMed

58. Ogawa, Y., Sun, B.K. and Lee, J.T. Intersection of the RNA interference and X-inactivation pathways. Science 320 (2008) 1336-1341. DOI: 10.1126/science.1157676.10.1126/science.1157676Search in Google Scholar PubMed PubMed Central

59. He, Y., Vogelstein, B., Velculescu, V.E., Papadopoulos, N. and Kinzler, K.W. The antisense transcriptomes of human cells. Science 322 (2008) 1855-1857. DOI:10.1126/ science.1163853.Search in Google Scholar

60. Franco-Zorrilla, J.M., Valli, A., Todesco, M., Mateos, I., Puga, M.I., Rubio- Somoza, I., Leyva, A., Weigel, D., Garcia, J.A. and Paz-Ares, J. Target mimicry provides a new mechanism for regulation of microRNA activity. Nat. Genet. 39 (2007) 1033-1037. DOI: 10.1038/ng2079.10.1038/ng2079Search in Google Scholar PubMed

61. Cesana, M., Cacchiarelli, D., Legnini, I., Santini, T., Sthandier, O., Chinappi, M., Tramontano, A. and Bozzoni, I. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147 (2011) 358-369. DOI: 10.1016/j.cell.2011.09.028.10.1016/j.cell.2011.09.028Search in Google Scholar PubMed PubMed Central

62. Karreth, F.A., Tay, Y., Perna, D., Ala, U., Tan, S.M., Rust, A.G., DeNicola, G., Webster, K.A., Weiss, D., Perez-Mancera, P.A., Krauthammer, M., Halaban, R., Provero, P., Adams, D.J., Tuveson, D.A. and Pandolfi, P.P. In vivo identification of tumor- suppressive PTEN ceRNAs in an oncogenic BRAFinduced mouse model of melanoma. Cell 147 (2011) 382-395. DOI: 10.1016/j.cell.2011.09.032.10.1016/j.cell.2011.09.032Search in Google Scholar PubMed PubMed Central

63. Gong, C. and Maquat, L.E. LncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3' UTRs via Alu elements. Nature 470 (2011) 284-288. DOI: 10.1038/nature09701.10.1038/nature09701Search in Google Scholar PubMed PubMed Central

64. Carrieri, C., Cimatti, L., Biagioli, M., Beugnet, A., Zucchelli, S., Fedele, S., Pesce, E., Ferrer, I., Collavin, L., Santoro, C., Forrest, A.R., Carninci, P., Biffo, S., Stupka, E. and Gustincich, S. Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature 491 (2012) 454-457. DOI: 10.1038/nature11508.10.1038/nature11508Search in Google Scholar PubMed

65. Liu, T., Huang, Y., Chen, J., Chi, H., Yu, Z., Wang, J. and Chen, C. Attenuated ability of BACE1 to cleave the amyloid precursor protein via silencing long noncoding RNA BACE1AS expression. Mol. Med. Rep. 10 (2014) 1275-1281. DOI: 10.3892/mmr.2014.2351.10.3892/mmr.2014.2351Search in Google Scholar PubMed PubMed Central

66. Yoon, J.H., Abdelmohsen, K., Srikantan, S., Yang, X., Martindale, J.L., De, S., Huarte, M., Zhan, M., Becker, K.G. and Gorospe, M. LincRNA-p21 suppresses target mRNA translation. Mol. Cell 47 (2012) 648-655. DOI: 10.1016/j.molcel.2012.06.027. 10.1016/j.molcel.2012.06.027Search in Google Scholar PubMed PubMed Central

67. Hu, G., Lou, Z. and Gupta, M. The long non-coding RNA GAS5 cooperates with the eukaryotic translation initiation factor 4E to regulate c-Myc translation. PLoS One 9 (2014) e107016. DOI: 10.1371/journal.pone.0107016.10.1371/journal.pone.0107016Search in Google Scholar PubMed PubMed Central

68. Wang, X., Arai, S., Song, X., Reichart, D., Du, K., Pascual, G., Tempst, P., Rosenfeld, M.G., Glass, C.K. and Kurokawa, R. Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature 454 (2008) 126-130. DOI: 10.1038/nature06992.10.1038/nature06992Search in Google Scholar PubMed PubMed Central

69. Wang, P., Xue, Y., Han, Y., Lin, L., Wu, C., Xu, S., Jiang, Z., Xu, J., Liu, Q. and Cao, X. The STAT3-binding long noncoding RNA lnc-DC controls human dendritic cell differentiation. Science 344 (2014) 310-313. DOI: 10.1126/science.1251456.10.1126/science.1251456Search in Google Scholar PubMed

70. Langmead, B. and Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9 (2012) 357-359. DOI: 10.1038/nmeth.1923.10.1038/nmeth.1923Search in Google Scholar PubMed PubMed Central

71. Li, H. and Durbin, R. Fast and accurate short read alignment with Burrows- Wheeler transform. Bioinformatics 25 (2009) 1754-1760. DOI: 10.1093/bioinformatics/btp324.10.1093/bioinformatics/btp324Search in Google Scholar PubMed PubMed Central

72. Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M.J., Salzberg, S.L., Wold, B.J. and Pachter, L. Transcript assembly and quantification by RNA sequencing reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28 (2010) 511-515. DOI: 10.1038/nbt.1621.10.1038/nbt.1621Search in Google Scholar PubMed PubMed Central

73. Amaral, P.P., Clark, M.B., Gascoigne, D.K., Dinger, M.E. and Mattick, J.S. LncRNAdb: a reference database for long noncoding RNAs. Nucleic Acids Res. 39 (2011) D146-151. DOI: 10.1093/nar/gkq1138.10.1093/nar/gkq1138Search in Google Scholar PubMed PubMed Central

74. Dinger, M.E., Pang, K.C., Mercer, T.R., Crowe, M.L., Grimmond, S.M. and Mattick, J.S. NRED: a database of long noncoding RNA expression. Nucleic Acids Res. 37 (2009) D122 -126. DOI: 10.1093/nar/gkn617.10.1093/nar/gkn617Search in Google Scholar PubMed PubMed Central

75. Kawaji, H., Severin, J., Lizio, M., Forrest, A.R., van Nimwegen, E., Rehli, M., Schroder, K., Irvine, K., Suzuki, H., Carninci, P., Hayashizaki, Y. and Daub, C.O. Update of the FANTOM web resource: from mammalian transcriptional landscape to its dynamic regulation. Nucleic Acids Res. 39 (2011) D856-860. DOI: 10.1093/nar/gkq1112.10.1093/nar/gkq1112Search in Google Scholar PubMed PubMed Central

76. Mercer, T.R., Gerhardt, D.J., Dinger, M.E., Crawford, J., Trapnell, C., Jeddeloh, J.A., Mattick, J.S. and Rinn, J.L. Targeted RNA sequencing reveals the deep complexity of the human transcriptome. Nat. Biotechnol. 30 (2012) 99-104. DOI: 10.1038/nbt.2024.10.1038/nbt.2024Search in Google Scholar PubMed PubMed Central

77. Khalil, A.M., Guttman, M., Huarte, M., Garber, M., Raj, A., Rivea Morales, D., Thomas, K., Presser, A., Bernstein, B.E., van Oudenaarden, A., Regev, A., Lander, E.S. and Rinn, J.L. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc. Natl. Acad. Sci. USA 106 (2009) 11667-11672. DOI: 10.1073/pnas.0904715106.10.1073/pnas.0904715106Search in Google Scholar PubMed PubMed Central

78. Mikkelsen, T.S., Ku, M., Jaffe, D.B., Issac, B., Lieberman, E., Giannoukos, G., Alvarez, P., Brockman, W., Kim, T.K., Koche, R.P., Lee, W., Mendenhall, E., O'Donovan, A., Presser, A., Russ, C., Xie, X., Meissner, A., Wernig, M., Jaenisch, R., Nusbaum, C., Lander, E.S. and Bernstein, B.E. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448 (2007) 553-560. DOI: 10.1038/nature06008.10.1038/nature06008Search in Google Scholar PubMed PubMed Central

79. Lee, T.L., Xiao, A. and Rennert, O.M. Identification of novel long noncoding RNA transcripts in male germ cells. Methods Mol. Biol. 825 (2012) 105-114. DOI: 10.1007/978-1 -61779-436-0_9.Search in Google Scholar

80. Djebali, S., Davis, C.A., Merkel, A., Dobin, A., Lassmann, T., Mortazavi, A., Tanzer, A., Lagarde, J., Lin, W., Schlesinger, F., Xue, C., Marinov, G.K., Khatun, J., Williams, B.A., Zaleski, C., Rozowsky, J., Roder, M., Kokocinski, F., Abdelhamid, R.F., Alioto, T., Antoshechkin, I., Baer, M.T., Bar, N.S., Batut, P., Bell, K., Bell, I., Chakrabortty, S., Chen, X., Chrast, J., Curado, J., Derrien, T., Drenkow, J., Dumais, E., Dumais, J., Duttagupta, R., Falconnet, E., Fastuca, M., Fejes-Toth, K., Ferreira, P., Foissac, S., Fullwood, M.J., Gao, H., Gonzalez, D., Gordon, A., Gunawardena, H., Howald, C., Jha, S., Johnson, R., Kapranov, P., King, B., Kingswood, C., Luo, O.J., Park, E., Persaud, K., Preall, J.B., Ribeca, P., Risk, B., Robyr, D., Sammeth, M., Schaffer, L., See, L.H., Shahab, A., Skancke, J., Suzuki, A.M., Takahashi, H., Tilgner, H., Trout, D., Walters, N., Wang, H., Wrobel, J., Yu, Y., Ruan, X., Hayashizaki, Y., Harrow, J., Gerstein, M., Hubbard, T., Reymond, A., Antonarakis, S.E., Hannon, G., Giddings, M.C., Ruan, Y., Wold, B., Carninci, P., Guigo, R. and Gingeras, T.R. Landscape of transcription in human cells. Nature 489 (2012) 101-108. DOI:10.1038/ nature11233.Search in Google Scholar

81. Zhang, L., Hamad, E.A., Vausort, M., Funakoshi, H., Feldman, A.M., Wagner, D.R. and Devaux, Y. Identification of candidate long noncoding RNAs associated with left ventricular hypertrophy. Clin. Transl. Sci. (2014) Nov 10. DOI: 10.1111/cts.12234.10.1111/cts.12234Search in Google Scholar PubMed PubMed Central

82. Zangrando, J., Zhang, L., Vausort, M., Maskali, F., Marie, P.Y., Wagner, D.R. and Devaux, Y. Identification of candidate long non-coding RNAs in response to myocardial infarction. BMC Genomics 15 (2014) 460. DOI: 10.1186/1471-2164-15-460.10.1186/1471-2164-15-460Search in Google Scholar PubMed PubMed Central

83. Cabili, M.N., Trapnell, C., Goff, L., Koziol, M., Tazon-Vega, B., Regev, A. and Rinn, J.L. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 25 (2011) 1915-1927. DOI: 10.1101/gad.17446611.10.1101/gad.17446611Search in Google Scholar PubMed PubMed Central

84. Lin, M.F., Jungreis, I. and Kellis, M. PhyloCSF: a comparative genomics method to distinguish protein coding and non-coding regions. Bioinformatics 27 (2011) i275-282. DOI: 10.1093/bioinformatics/btr209.10.1093/bioinformatics/btr209Search in Google Scholar PubMed PubMed Central

85. Bussotti, G., Notredame, C. and Enright, A.J. Detecting and comparing noncoding RNAs in the high-throughput era. Int. J. Mol. Sci. 14 (2013) 15423-15458. DOI: 10.3390/ijms1408 15423.Search in Google Scholar

86. Kong, L., Zhang, Y., Ye, Z.Q., Liu, X.Q., Zhao, S.Q., Wei, L. and Gao, G. CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res. 35 (2007) W345-349. DOI: 10.1093/nar/gkm391. 10.1093/nar/gkm391Search in Google Scholar PubMed PubMed Central

87. Arrial, R.T., Togawa, R.C. and Brigido Mde, M. Screening non-coding RNAs in transcriptomes from neglected species using PORTRAIT: case study of the pathogenic fungus Paracoccidioides brasiliensis. BMC Bioinformatics 10 (2009) 239. DOI: 10.1186/1471-21 05-10-239.Search in Google Scholar

88. Wang, L., Park, H.J., Dasari, S., Wang, S., Kocher, J.P. and Li, W. CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model. Nucleic Acids Res. 41 (2013) e74. DOI: 10.1093/nar/gkt006.10.1093/nar/gkt006Search in Google Scholar PubMed PubMed Central

89. Han, H., Hu, Z., Sun, S., Yao, F., Yan, X., Zhang, X. and Wu, B. Simultaneous detection and identification of bacteria and fungi in cerebrospinal fluid by TaqMan probe-based real-time PCR. Clin. Lab. 60 (2014) 1287-1293.Search in Google Scholar

90. Basu, R., Lai, L.T., Meng, Z., Wu, J., Shao, F. and Zhang, L.F. Using aminolabeled nucleotide probes for simultaneous single molecule RNA-DNA FISH. PLoS One 9 (2014) e107425. DOI: 10.1371/journal.pone.0107425.10.1371/journal.pone.0107425Search in Google Scholar PubMed PubMed Central

91. Karli, P., Martle, V., Bossens, K., Summerfield, A., Doherr, M.G., Turner, P., Vandevelde, M., Forterre, F. and Henke, D. Dominance of chemokine ligand 2 and matrix metalloproteinase-2 and -9 and suppression of pro-inflammatory cytokines in the epidural compartment after intervertebral disc extrusion in a canine model. Spine J. (2014). DOI: 10.1016/j.spinee. 2014.05.021.Search in Google Scholar

92. Hansen, B.O., Vaid, N., Musialak-Lange, M., Janowski, M. and Mutwil, M. Elucidating gene function and function evolution through comparison of coexpression networks of plants. Front. Plant Sci. 5 (2014) 394. DOI: 10.3389/fpls.2014.00394.10.3389/fpls.2014.00394Search in Google Scholar PubMed PubMed Central

93. Chang, T.H., Huang, H.D., Chuang, T.N., Shien, D.M. and Horng, J.T. RNAMST: efficient and flexible approach for identifying RNA structural homologs. Nucleic Acids Res. 34 (2006) W423-428. DOI: 10.1093/nar/gkl231.10.1093/nar/gkl231Search in Google Scholar PubMed PubMed Central

94. Rinn, J.L. and Chang, H.Y. Genome regulation by long noncoding RNAs. Annu. Rev. Biochem. 81 (2012) 145-166. DOI: 10.1146/annurev-biochem-051410-092902.10.1146/annurev-biochem-051410-092902Search in Google Scholar PubMed PubMed Central

95. Jeggari, A., Marks, D.S. and Larsson, E. miRcode: a map of putative microRNA target sites in the long non-coding transcriptome. Bioinformatics 28 (2012) 2062-2063. DOI: 10.1093/ bioinformatics/bts344.Search in Google Scholar

96. Li, J.H., Liu, S., Zhou, H., Qu, L.H. and Yang, J.H. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 42 (2014) D92-97. DOI: 10.1093/nar/gkt1248.10.1093/nar/gkt1248Search in Google Scholar PubMed PubMed Central

97. Paraskevopoulou, M.D., Georgakilas, G., Kostoulas, N., Reczko, M., Maragkakis, M., Dalamagas, T.M. and Hatzigeorgiou, A.G. DIANALncBase: experimentally verified and computationally predicted microRNA targets on long non-coding RNAs. Nucleic Acids Res. 41 (2013) D239-245. DOI: 10.1093/nar/gks1246.10.1093/nar/gks1246Search in Google Scholar PubMed PubMed Central

98. Chakraborty, S., Deb, A., Maji, R.K., Saha, S. and Ghosh, Z. LncRBase: an enriched resource for lncRNA information. PLoS One 9 (2014) e108010. DOI: 10.1371/journal.pone.0108010. 10.1371/journal.pone.0108010Search in Google Scholar PubMed PubMed Central

99. Agostini, F., Zanzoni, A., Klus, P., Marchese, D., Cirillo, D. and Tartaglia, G.G. catRAPID omics: a web server for large-scale prediction of protein-RNA interactions. Bioinformatics 29 (2013) 2928-2930. DOI: 10.1093/ bioinformatics/btt495.Search in Google Scholar

100. Chakraborty, D., Kappei, D., Theis, M., Nitzsche, A., Ding, L., Paszkowski- Rogacz, M., Surendranath, V., Berger, N., Schulz, H., Saar, K., Hubner, N. and Buchholz, F. Combined RNAi and localization for functionally dissecting long noncoding RNAs. Nat. Methods 9 (2012) 360-362. DOI: 10.1038/nmeth.1894.10.1038/nmeth.1894Search in Google Scholar PubMed

101. Chu, C., Quinn, J. and Chang, H.Y. Chromatin isolation by RNA purification (ChIRP). J. Vis. Exp. (2012). DOI: 10.3791/3912.10.3791/3912Search in Google Scholar PubMed PubMed Central

102. Selth, L.A., Gilbert, C. and Svejstrup, J.Q. RNA immunoprecipitation to determine RNA-protein associations in vivo. Cold Spring Harb. Protoc. 2009 (2009) pdb prot5234. DOI: 10.1101/pdb.prot5234.10.1101/pdb.prot5234Search in Google Scholar PubMed

103. Simon, M.D., Pinter, S.F., Fang, R., Sarma, K., Rutenberg-Schoenberg, M., Bowman, S.K., Kesner, B.A., Maier, V.K., Kingston, R.E. and Lee, J.T. Highresolution Xist binding maps reveal two-step spreading during X-chromosome inactivation. Nature 504 (2013) 465-469. DOI: 10.1038/nature12719.10.1038/nature12719Search in Google Scholar PubMed PubMed Central

104. Novikova, I.V., Dharap, A., Hennelly, S.P. and Sanbonmatsu, K.Y. 3S: shotgun secondary structure determination of long non-coding RNAs. Methods 63 (2013) 170-177. DOI: 10.1016/j.ymeth.2013.07.030.10.1016/j.ymeth.2013.07.030Search in Google Scholar PubMed

105. Novikova, I.V., Hennelly, S.P. and Sanbonmatsu, K.Y. Structural architecture of the human long non-coding RNA, steroid receptor RNA activator. Nucleic Acids Res. 40 (2012) 5034-5051. DOI: 10.1093/nar/gks071.10.1093/nar/gks071Search in Google Scholar PubMed PubMed Central

106. Quinn, J.J., Ilik, I.A., Qu, K., Georgiev, P., Chu, C., Akhtar, A. and Chang, H.Y. Revealing long noncoding RNA architecture and functions using domain-specific chromatin isolation by RNA purification. Nat. Biotechnol. 32 (2014) 933-940. DOI: 10.1038/nbt.2943.10.1038/nbt.2943Search in Google Scholar PubMed PubMed Central

107. Kertesz, M., Wan, Y., Mazor, E., Rinn, J.L., Nutter, R.C., Chang, H.Y. and Segal, E. Genome-wide measurement of RNA secondary structure in yeast. Nature 467 (2010) 103-107. DOI: 10.1038/nature09322.10.1038/nature09322Search in Google Scholar PubMed PubMed Central

108. Mortimer, S.A., Trapnell, C., Aviran, S., Pachter, L. and Lucks, J.B. SHAPESeq: High-Throughput RNA Structure Analysis. Curr. Protoc. Chem. Biol. 4 (2012) 275-297. DOI: 10.1002/9780470559277.ch120019.10.1002/9780470559277.ch120019Search in Google Scholar PubMed

109. Underwood, J.G., Uzilov, A.V., Katzman, S., Onodera, C.S., Mainzer, J.E., Mathews, D.H., Lowe, T.M., Salama, S.R. and Haussler, D. FragSeq: transcriptome-wide RNA structure probing using high-throughput sequencing. Nat. Methods 7 (2010) 995-1001. DOI: 10.1038/ nmeth.1529.Search in Google Scholar

110. Ouyang, Z., Snyder, M.P. and Chang, H.Y. SeqFold: genome-scale reconstruction of RNA secondary structure integrating high-throughput sequencing data. Genome Res. 23 (2013) 377-387. DOI: 10.1101/gr.138545.112.10.1101/gr.138545.112Search in Google Scholar PubMed PubMed Central

111. Lai, M.C., Yang, Z., Zhou, L., Zhu, Q.Q., Xie, H.Y., Zhang, F., Wu, L.M., Chen, L.M. and Zheng, S.S. Long non-coding RNA MALAT-1 overexpression predicts tumor recurrence of hepatocellular carcinoma after liver transplantation. Med. Oncol. 29 (2012) 1810-1816. DOI: 10.1007/s12032-011-0004-z.10.1007/s12032-011-0004-zSearch in Google Scholar PubMed

112. Wang, X,, Li, M., Wang, Z., Han, S., Tang, X., Ge, Y., Zhou, L., Zhou, C., Yuan, Q. and Yang, M. Silencing of long noncoding RNA MALAT1 by miR-101 and miR-217 inhibits proliferation, migration and invasion of esophageal squamous cell carcinoma cells. J. Biol. Chem. (2014) Dec 23. pii: jbc.M114.596866. DOI: 10.1074/jbc.M114.596866.10.1074/jbc.M114.596866Search in Google Scholar PubMed PubMed Central

113. Zhang, H.M., Yang, F.Q., Chen, S.J., Che, J. and Zheng, J.H. Upregulation of long non-coding RNA MALAT1 correlates with tumor progression and poor prognosis in clear cell renal cell carcinoma. Tumour Biol. (2014) Dec 6. DOI: 10.1007/s13277-014-2925-6.10.1007/s13277-014-2925-6Search in Google Scholar PubMed

114. Dong, Y., Liang, G., Yuan, B., Yang, C., Gao, R. and Zhou, X. MALAT1 promotes the proliferation and metastasis of osteosarcoma cells by activating the PI3K/Akt pathway. Tumour Biol. (2014) Nov 28. DOI: 10.1007/s13277-014-2631-4.10.1007/s13277-014-2631-4Search in Google Scholar PubMed

115. Liu, J.H., Chen, G., Dang, Y.W., Li, C.J. and Luo, D.Z. Expression and prognostic significance of lncRNA MALAT1 in pancreatic cancer tissues. Asian Pac. J. Cancer Prev. 15 (2014) 2971-2977. DOI: 10.7314/apjcp.2014.15.7.2971.10.7314/APJCP.2014.15.7.2971Search in Google Scholar

116. Yu, G., Yao, W., Gumireddy, K., Li, A., Wang, J., Xiao, W., Chen, K., Xiao, H., Li, H., Tang, K., Ye, Z., Huang, Q. and Xu, H. Pseudogene PTENP1 functions as a competing endogenous RNA to suppress clear-cell renal cell carcinoma progression. Mol. Cancer Ther. 13 (2014) 3086-3097. DOI: 10.1158/1535-7163.mct-14-0245.10.1158/1535-7163.MCT-14-0245Search in Google Scholar PubMed PubMed Central

117. Yu, W., Gius, D., Onyango, P., Muldoon-Jacobs, K., Karp, J., Feinberg, A.P. and Cui, H. Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature 451 (2008) 202-206. DOI: 10.1038/nature06468.10.1038/nature06468Search in Google Scholar PubMed PubMed Central

118. Tufarelli, C., Stanley, J.A., Garrick, D., Sharpe, J.A., Ayyub, H., Wood, W.G. and Higgs, D.R. Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease. Nat. Genet. 34 (2003) 157-165. DOI: 10.1038/ng1157. 10.1038/ng1157Search in Google Scholar PubMed

Received: 2014-12-15
Accepted: 2015-3-13
Published Online: 2015-5-15
Published in Print: 2015-6-1

© University of Wrocław, Poland

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.1515/cmble-2015-0021/html
Scroll to top button