Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 25, 2015

Oncogene-dependent survival of highly transformed cancer cells under conditions of extreme centrifugal force – implications for studies on extracellular vesicles

  • Tae Hoon Lee , Shilpa Chennakrishnaiah and Janusz Rak EMAIL logo

Abstract

Extracellular vesicles (EVs), including exosomes, are a subject of intense interest due to their emission by cancer cells and role in intercellular communication. Earlier reports suggested that oncogenes, such as RAS, MET or EGFR, drive cellular vesiculation. Interestingly, these oncogenes may also traffic between cells using the EV-mediated emission and uptake processes. One of the main tools in the analysis of EVs are ultracentrifugation protocols designed to efficiently separate parental cells from vesicles through a sequence of steps involving increasing g-force. Here we report that ultracentrifugationonly EV preparations from highly transformed cancer cells, driven by the overexpression of oncogenic H-ras (RAS-3) and v-src (SRC-3), may contain clonogenic cancer cells, while preparations of normal or less aggressive human cell lines are generally free from such contamination. Introduction of a filtration step eliminates clonogenic cells from the ultracentrifugate. The survival of RAS-3 and SRC-3 cells under extreme conditions of centrifugal force (110,000 g) is oncogene-induced, as EV preparations of their parental non-tumourigenic cell line (IEC-18) contain negligible numbers of clonogenic cells. Moreover, treatment of SRC-3 cells with the SRC inhibitor (PP2) markedly reduces the presence of such cells in the unfiltered ultracentrifugate. These observations enforce the notion that EV preparations require careful filtration steps, especially in the case of material produced by highly transformed cancer cell types. We also suggest that oncogenic transformation may render cells unexpectedly resistant to extreme physical forces, which may affect their biological properties in vivo.

References

1. Lee, T.H., D’asti, E., Magnus, N., Al-Nedawi, K., Meehan, B. and Rak, J. Microvesicles as mediators of intercellular communication in cancer-the emerging science of cellular ‘debris’. Semin. Immunopathol. 33 (2011) 455-467. DOI: 10.1007/s00281-011-0250-3.10.1007/s00281-011-0250-3Search in Google Scholar PubMed

2. Thery, C. Exosomes: secreted vesicles and intercellular communications. F1000 Biol. Rep. 3 (2011) 15. DOI: 10.3410/B3-15.10.3410/B3-15Search in Google Scholar PubMed PubMed Central

3. Gyorgy, B., Szabo, T.G., Pasztoi, M., Pal, Z., Misjak, P., Aradi, B., Laszlo, V., Pallinger, E., Pap, E., Kittel, A., Nagy, G., Falus, A. and Buzas, E.I. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol. Life Sci. 68 (2011) 2667-2688. DOI: 10.1007/s00018-011-0689-3.10.1007/s00018-011-0689-3Search in Google Scholar PubMed PubMed Central

4. Johnstone, R.M. Exosomes biological significance: A concise review. Blood Cells Mol. Dis. 36 (2006) 315-321.10.1016/j.bcmd.2005.12.001Search in Google Scholar PubMed

5. Thery, C., Ostrowski, M. and Segura, E. Membrane vesicles as conveyors of immune responses. Nat. Rev. Immunol. 9 (2009) 581-593. DOI: 10.1038/nri2567.10.1038/nri2567Search in Google Scholar PubMed

6. Zitvogel, L., Regnault, A., Lozier, A., Wolfers, J., Flament, C., Tenza, D., Ricciardi-Castagnoli, P., Raposo, G. and Amigorena, S. Eradication of established murine tumours using a novel cell-free vaccine: dendritic cellderived exosomes. Nat. Med. 4 (1998) 594-600.Search in Google Scholar

7. Valadi, H., Ekstrom, K., Bossios, A., Sjostrand, M., Lee, J.J. and Lotvall, J.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9 (2007) 654-659.Search in Google Scholar

8. Thery, C., Amigorena, S., Raposo, G. and Clayton, A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. Cell Biol. 3 (2006) 3.22. DOI: 10.1002/0471143030.10.1002/0471143030Search in Google Scholar

9. Bianco, F., Perrotta, C., Novellino, L., Francolini, M., Riganti, L., Menna, E., Saglietti, L., Schuchman, E.H., Furlan, R., Clementi, E., Matteoli, M. and Verderio, C. Acid sphingomyelinase activity triggers microparticle release from glial cells. EMBO J. 28 (2009) 1043-1054. DOI: 10.1038/emboj.2009.45.10.1038/emboj.2009.45Search in Google Scholar PubMed PubMed Central

10. Luga, V., Zhang, L., Viloria-Petit, A.M., Ogunjimi, A.A., Inanlou, M.R., Chiu, E., Buchanan, M., Hosein, A.N., Basik, M. and Wrana, J.L. Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell 151 (2012) 1542-1556. DOI: 10.1016/j.cell.2012.11.024.10.1016/j.cell.2012.11.024Search in Google Scholar PubMed

11. Peinado, H., Aleckovic, M., Lavotshkin, S., Matei, I., Costa-Silva, B., Moreno-Bueno, G., Hergueta-Redondo, M., Williams, C., Garcia-Santos, G., Ghajar, C., Nitadori-Hoshino, A., Hoffman, C., Badal, K., Garcia, B.A., Callahan, M.K., Yuan, J., Martins, V.R., Skog, J., Kaplan, R.N., Brady, M.S., Wolchok, J.D., Chapman, P.B., Kang, Y., Bromberg, J. and Lyden, D. Melanoma exosomes educate bone marrow progenitor cells toward a prometastatic phenotype through MET. Nat. Med. 18 (2012) 883-891. DOI: 10.1038/nm.2753.10.1038/nm.2753Search in Google Scholar PubMed PubMed Central

12. Poste, G. and Nicolson, G.L. Arrest and metastasis of blood-borne tumour cells are modified by fusion of plasma membrane vesicles from highly metastatic cells. Proc. Natl. Acad. Sci. USA 77 (1980) 399-403.Search in Google Scholar

13. Skog, J. Wurdinger, T., van Rijn, S., Meijer, D.H., Gainche, L., Curry, Jr. W.T., Carter, B.S., Krichevsky, A.M. and Breakefield, X.O. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat. Cell Biol. 10 (2008) 1470-1476. DOI: 10.1038/ncb1800.10.1038/ncb1800Search in Google Scholar PubMed PubMed Central

14. Christianson, H.C., Svensson, K.J., van Kuppevelt, T.H., Li, J.P. and Belting, M. Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity. Proc. Natl. Acad. Sci. USA 110 (2013) 17380-17385. DOI: 10.1073/pnas.1304266110.10.1073/pnas.1304266110Search in Google Scholar PubMed PubMed Central

15. Taylor, D.D. and Gercel-Taylor, C. MicroRNA signatures of tumour-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol. Oncol. 110 (2008) 13-21. DOI: 10.1016/j.ygyno.2008.04.033. 10.1016/j.ygyno.2008.04.033Search in Google Scholar PubMed

16. D’Asti, E., Garnier, D., Lee, T.H., Montermini, L., Meehan, B. and Rak, J. Oncogenic extracellular vesicles in brain tumour progression. Front. Physiol. 3 (2012) 1-15. DOI: 10.3389/fphys.2012.00294. eCollection 2012.10.3389/fphys.2012.00294Search in Google Scholar PubMed PubMed Central

17. Al-Nedawi, K., Meehan, B., Micallef, J., Lhotak, V., May, L., Guha, A. and Rak, J. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat. Cell Biol. 10 (2008) 619-624. DOI: 10.1038/ncb1725.10.1038/ncb1725Search in Google Scholar PubMed

18. Al-Nedawi K., Meehan, B., Kerbel, R.S., Allison, A.C. and Rak, J. Endothelial expression of autocrine VEGF upon the uptake of tumourderived microvesicles containing oncogenic EGFR. Proc. Natl. Acad. Sci. USA 106 (2009) 3794-3799. DOI: 10.1073/pnas.0804543106.10.1073/pnas.0804543106Search in Google Scholar PubMed PubMed Central

19. Lee, T.H., Chennakrishnaiah, S., Audemard, E., Montermini, L., Meehan, B. and Rak, J. Oncogenic ras-driven cancer cell vesiculation leads to emission of double-stranded DNA capable of interacting with target cells. Biochem. Biophys. Res. Commun. 451 (2014) 295-301. DOI: 10.1016/j.bbrc.2014.07.109.10.1016/j.bbrc.2014.07.109Search in Google Scholar PubMed

20. Balaj, L., Lessard, R., Dai, L., Cho, Y.J., Pomeroy, S.L., Breakefield, X.O. and Skog, J. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat. Commun. 2 (2011). DOI: 10.1038/ncomms1180.10.1038/ncomms1180Search in Google Scholar PubMed PubMed Central

21. Holmgren, L., Szeles, A., Rajnavolgyi, E., Folkman, J., Klein, G., Emberg, I. and Falk, K.I. Horizontal transfer of DNA by the uptake of apoptotic bodies. Blood 93 (1999) 3956-3963.Search in Google Scholar

22. Thakur, B.K., Zhang, H., Becker, A., Matei, I., Huang, Y., Costa-Silva, B., Zheng, Y., Hoshino, A., Brazier, H., Xiang, J., Williams, C., Rodriguez- Barrueco, R., Silva, J.M., Zhang, W., Hearn, S., Elemento, O., Paknejad, N., Manova-Todorova, K., Welte, K., Bromberg, J., Peinado, H. and Lyden, D. Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res. 24 (2014) 766-769. DOI: 10.1038/cr.2014.44.10.1038/cr.2014.44Search in Google Scholar PubMed PubMed Central

23. Kahlert, C., Melo, S.A., Protopopov, A., Tang, J., Seth, S., Koch, M., Zhang, J., Weitz, J., Chin, L., Futreal, A. and Kalluri, R. Identification of doublestranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J. Biol. Chem. 289 (2014) 3869-3875. DOI: 10.1074/jbc.C113.532267.10.1074/jbc.C113.532267Search in Google Scholar PubMed PubMed Central

24. Rak, J., Mitsuhashi, Y., Bayko, L., Filmus, J., Shirasawa, S., Sasazuki, T. and Kerbel, R.S. Mutant ras oncogenes upregulate VEGF/VPF expression: implications for induction and inhibition of tumour angiogenesis. Cancer Res. 55 (1995) 4575-4580.Search in Google Scholar

25. Kong, L., Deng, Z., Shen, H. and Zhang, Y. Src family kinase inhibitor PP2 efficiently inhibits cervical cancer cell proliferation through down-regulating phosphor-Src-Y416 and phosphor-EGFR-Y1173. Mol. Cell. Biochem. 348 (2011) 11-19. DOI: 10.1007/s11010-010-0632-1.10.1007/s11010-010-0632-1Search in Google Scholar PubMed

26. Rak, J., Mitsuhashi, Y., Erdos, V., Huang, S.N., Filmus, J. and Kerbel, R.S Massive programmed cell death in intestinal epithelial cells induced by three-dimensional growth conditions: suppression by mutant c-H-ras oncogene expression. J. Cell Biol. 131 (1995) 1587-1598.Search in Google Scholar

27. Karnoub, A.E. and Weinberg, R.A. Ras oncogenes: split personalities. Nat. Rev. Mol. Cell Biol. 9 (2008) 517-531. DOI: 10.1038/nrm2438.10.1038/nrm2438Search in Google Scholar PubMed PubMed Central

28. Cox, A.D., Fesik, S.W., Kimmelman, A.C., Luo, J. and Der, C.J. Drugging the undruggable RAS: Mission possible? Nat. Rev. Drug Discov. 13 (2014) 828-851. DOI: 10.1038/nrd4389.10.1038/nrd4389Search in Google Scholar PubMed PubMed Central

29. Sumita, K., Yoshino, H., Sasaki, M., Majd, N., Kahoud, E.R., Takahashi, H., Takeuchi, K., Kuroda, T., Lee, S., Charest, P.G., Takeda, K., Asara, J.M., Firtel, R.A., Anastasiou, D. and Sasaki, A.T. Degradation of activated K-Ras orthologue via K-Ras-specific lysine residues is required for cytokinesis. J. Biol. Chem. 289 (2014) 3950-3959. DOI: 10.1074/jbc.M113.531178.10.1074/jbc.M113.531178Search in Google Scholar PubMed PubMed Central

30. Commisso, C., Davidson, S.M., Soydaner-Azeloglu, R.G., Parker, S.J., Kamphorst, J.J., Hackett, S., Grabocka, E., Nofal, M., Drebin, J.A., Thompson, C.B., Rabinowitz, J.D., Metallo, C.M., Vander Heiden, M,G. and Bar-Sagi, D. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497 (2013) 633-637. DOI: 10.1038/nature12138.10.1038/nature12138Search in Google Scholar PubMed PubMed Central

31. Vogel, V. and Sheetz, M. Local force and geometry sensing regulate cell functions. Nat. Rev. Mol. Cell Biol. 7 (2006) 265-275.Search in Google Scholar

32. Milsom, C. and Rak, J. Regulation of tissue factor and angiogenesis-related genes by changes in cell shape. Biochem. Biophys. Res. Commun. 337 (2005) 1267-1275.Search in Google Scholar

33. Ingber, D.E. Tensegrity I. Cell structure and hierarchical systems biology. J. Cell Sci. 116 (2003) 1157-1173.Search in Google Scholar

34. Liu, J., Tan, Y., Zhang, H., Zhang, Y., Xu, P., Chen, J., Poh, Y.C., Tang, K., Wang, N. and Huang, B. Soft fibrin gels promote selection and growth of tumourigenic cells. Nature Mat. 11 (2012) 734-742. DOI: 10.1038/nmat3361.10.1038/nmat3361Search in Google Scholar PubMed PubMed Central

35. Guignandon, A., Faure, C., Neutelings, T., Rattner, A., Mineur, P., Linossier, M., Laroche, N., Lambert, C., Deroanne, C., Nusgens, B., Demets, R., Colige, A. and Vico, L. Rac1 GTPase silencing counteracts microgravity-induced effects on osteoblastic cells. FASEB J. 28 (2014) 4077-4087.Search in Google Scholar

36. Klaus, D., Simske, S., Todd, P. and Stodieck, L. Investigation of space flight effects on Escherichia coli and a proposed model of underlying physical mechanisms. Microbiology 143 (1997) 449-455.Search in Google Scholar

37. Deguchi, S., Shimoshige, H., Tsudome, M., Mukai, S.A., Corkery, R.W., Ito, S. and Horikoshi, K. Microbial growth at hyperaccelerations up to 403,627 * g. Proc. Natl. Acad. Sci. USA 108 (2011) 7997-8002. DOI: 10.1073/pnas.1018027108 10.1073/pnas.1018027108Search in Google Scholar PubMed PubMed Central

Received: 2014-11-7
Accepted: 2015-1-19
Published Online: 2015-3-25
Published in Print: 2015-3-1

© 2015 University of Wrocław, Poland

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/cmble-2015-0003/html
Scroll to top button