Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 22, 2016

A Note on Multilevel Based Error Estimation

  • Helmut Harbrecht EMAIL logo and Reinhold Schneider

Abstract

By employing the infinite multilevel representation of the residual, we derive computable bounds to estimate the distance of finite element approximations to the solution of the Poisson equation. If the finite element approximation is a Galerkin solution, the derived error estimator coincides with the standard element and edge based estimator. If Galerkin orthogonality is not satisfied, then the discrete residual additionally appears in terms of the BPX preconditioner. As a by-product of the present analysis, conditions are derived such that the hierarchical error estimation is reliable and efficient.

MSC 2010: 65N15; 65N30; 65N50

Funding statement: We acknowledge the support by the Sino-German Science Center (grant id 1228) on the occasion of the Chinese-German Workshop on Computational and Applied Mathematics in Augsburg 2015.

References

[1] Ainsworth M. and Oden J. T., A Posteriori Error Estimation in Finite Element Analysis, Pure Appl. Math., John Wiley & Sons, New York, 2000. 10.1002/9781118032824Search in Google Scholar

[2] Babuška I. and Miller A., A feedback finite element method with a posteriori estimation. Part I: The finite element method and some basic properties of the a posteriori error estimator, Comput. Methods Appl. Mech. Engrg. 61 (1987), no. 1, 1–40. 10.1016/0045-7825(87)90114-9Search in Google Scholar

[3] Babuška I. and Rheinboldt W. C., A-posteriori error estimates for the finite element method, Internat. J. Numer. Methods Engrg. 12 (1978), 1597–1615. 10.1002/nme.1620121010Search in Google Scholar

[4] Bangerth W. and Rannacher R., Adaptive Finite Element Methods for Differential Equations, Lectures in Math. ETH Zürich, Birkhäuser, Basel, 2003. 10.1007/978-3-0348-7605-6Search in Google Scholar

[5] Binev P., Dahmen W. and DeVore R., Adaptive finite element methods with convergence rates, Numer. Math. 97 (2004), no. 2, 219–268. 10.21236/ADA640658Search in Google Scholar

[6] Binev P. and DeVore R., Fast computation in adaptive tree approximation, Numer. Math. 97 (2004), no. 2, 193–217. 10.21236/ADA640671Search in Google Scholar

[7] Braess D., Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics, 3rd ed., Cambridge University Press, Cambridge, 2007. 10.1017/CBO9780511618635Search in Google Scholar

[8] Bramble J., Pasciak J. and Xu J., Parallel multilevel preconditioners, Math. Comp. 55 (1990), no. 1, 1–22. 10.1090/S0025-5718-1990-1023042-6Search in Google Scholar

[9] Carstensen C., A unifying theory of a posteriori finite element error control, Numer. Math. 100 (2005), no. 4, 617–637. 10.1007/s00211-004-0577-ySearch in Google Scholar

[10] Cohen A., Dahmen W. and DeVore R., Adaptive wavelet methods for elliptic operator equations: Convergence rates, Math. Comp. 70 (2001), no. 233, 27–75. 10.1090/S0025-5718-00-01252-7Search in Google Scholar

[11] Cohen A., Dahmen W. and DeVore R., Adaptive wavelet methods. II: Beyond the elliptic case, Found. Comput. Math. 2 (2002), no. 3, 203–245. 10.1007/s102080010027Search in Google Scholar

[12] Dahlke S., Dahmen W., Hochmuth R. and Schneider R., Stable multiscale bases and local error estimation for elliptic problems, Appl. Numer. Math. 23 (1997), 21–47. 10.1016/S0168-9274(96)00060-8Search in Google Scholar

[13] Dahlke S., Fornasier M. and Raasch T., Adaptive frame methods for elliptic operator equations, Adv. Comput. Math. 27 (2007), no. 1, 27–63. 10.1007/s10444-005-7501-6Search in Google Scholar

[14] Dahlke S., Fornasier M., Raasch T., Stevenson R. and Werner M., Adaptive frame methods for elliptic operator equations: The steepest descent approach, IMA J. Numer. Anal. 27 (2007), no. 4, 717–740. 10.1093/imanum/drl035Search in Google Scholar

[15] Dahmen W., Wavelet and multiscale methods for operator equations, Acta Numer. 6 (1997), 55–228. 10.1007/978-3-540-39810-3_2Search in Google Scholar

[16] Dörfler W., A robust adaptive strategy for the nonlinear Poisson equation, Computing 55 (1995), no. 4, 289–304. 10.1007/BF02238484Search in Google Scholar

[17] Dörfler W., A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal. 33 (1996), 1106–1124. 10.1137/0733054Search in Google Scholar

[18] Dörfler W. and Heuveline V., Convergence of an adaptive hp finite element strategy in one space dimension, Appl. Numer. Math. 57 (2007), 1108–1124. 10.1016/j.apnum.2006.10.003Search in Google Scholar

[19] Gantumur T., Harbrecht H. and Stevenson R., An optimal adaptive wavelet method without coarsening of the iterands, Math. Comp. 76 (2007), no. 258, 615–629. 10.1090/S0025-5718-06-01917-XSearch in Google Scholar

[20] Griebel M., Multilevel algorithms considered as iterative methods on semidefinite systems, SIAM J. Sci. Comput. 15 (1994), 547–565. 10.1137/0915036Search in Google Scholar

[21] Harbrecht H., Schneider R. and Schwab C., Multilevel frames for sparse tensor product spaces, Numer. Math. 110 (2008), 199–220. 10.1007/s00211-008-0162-xSearch in Google Scholar

[22] Morin P., Nochetto R. and Siebert K., Data oscillation and convergence of adaptive FEM, SIAM J. Numer. Anal. 38 (2000), 466–488. 10.1137/S0036142999360044Search in Google Scholar

[23] Oswald P., Multilevel Finite Element Approximation. Theory and Applications, Teubner Skripten Numer., Teubner, Stuttgart, 1994. 10.1007/978-3-322-91215-2Search in Google Scholar

[24] Rannacher R., Westenberger A. and Wollner W., Adaptive finite element solution of eigenvalue problems: Balancing of discretization and iteration error, J. Numer. Math. 18 (2010), 303–327. 10.1515/jnum.2010.015Search in Google Scholar

[25] Sacchi R. and Veeser A., Locally efficient and reliable a posteriori error estimators for Dirichlet problems, Math. Models Methods Appl. Sci. 16 (2006), 319–346. 10.1142/S0218202506001170Search in Google Scholar

[26] Stevenson R., Adaptive solution of operator equations using wavelet frames, SIAM J. Numer. Anal. 41 (2003), 1074–1100. 10.1137/S0036142902407988Search in Google Scholar

[27] Stevenson R., Optimality of a standard adaptive finite element method, Found. Comput. Math. 7 (2007), 245–269. 10.1007/s10208-005-0183-0Search in Google Scholar

[28] Verfürth R., A Review of s Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Wiley-Teubner Series Adv. in Numer. Math., Wiley & Sons, Chichester, 1996. Search in Google Scholar

[29] Verfürth R., A Posteriori Error Estimation Techniques for Finite Element Methods, Numer. Math. Sci. Comput., Oxford University Press, Oxford, 2013. 10.1093/acprof:oso/9780199679423.001.0001Search in Google Scholar

[30] Wu H. and Chen Z., Uniform convergence of multigrid V-cycle on adaptively refined finite element meshes for second order elliptic problems, Sci. China Ser. A 49 (2006), 1405–1429. 10.1007/s11425-006-2005-5Search in Google Scholar

Received: 2015-11-21
Revised: 2016-2-17
Accepted: 2016-3-1
Published Online: 2016-3-22
Published in Print: 2016-7-1

© 2016 by De Gruyter

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/cmam-2016-0013/html
Scroll to top button