Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 28, 2016

Co-precipitation behaviour of titanium-containing silicate solution

  • Hui-Hong Lü EMAIL logo , Min-Zhi Wu , Zheng-Li Zhang , Xing-Rong Wu , Liao-Sha Li and Zhi-Fang Gao
From the journal Chemical Papers

Abstract

The co-precipitation behaviour of a simulated Al2(SO4)3–TiOSO4–Na2SiO3 solution that imitated the lixivium of Ti-bearing blast furnace slag (Ti-slag) leached by sulphuric acid was investigated in this study. Various chemical analyses were employed to study the selective precipitation of multiple target components. Based on the high-added-value applications of Ti-slag, a new method was developed to prepare aluminium titanate composites from titanium-containing silicates. The findings demonstrate that the onsets of Ti and Al precipitation occur at pH values of 3.5 and 5.0, respectively, followed by Si precipitation. The particle sizes of the co-precipitates were greatly influenced by the precipitants, pH and the initial Al/Ti mole ratio. The results also show that the precipitation ratio of Ti, Al and Si generally increases with the pH and temperature, regardless of the Al/Ti mole ratio. The Si-O-Al, Ti-O-Al, and Ti-O-Si bonds that were formed were dependent on the pH and the initial Al/Ti mole ratio. There was a synthesis path for β-Al2TiO5 (AT) from the solid-state reaction between rutile and α-Al2O3 at 1362.5°C. The AT composites were successfully prepared by sintering the co-precipitates at 1450°C, which exhibited good thermal stability as estimated by the XRD measurements of the sample annealed at 1200°C for 4 hours.

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (nos.51204004and51274006), University Science Research Project of Anhui Province (KJ2016A810), the Natural Science Foundation of China (U1660110) and Anhui Innovation Team Project of New Technology in Materialisation of Metallurgical Solid Wastes.

References

Aravind, P. R., Mukundan, P., Pillai, P. K., & Warrier, K. G. K. (2006). Mesoporous silica–alumina aerogels with high thermal pore stability through hybrid sol–gel route followed by subcritical drying. Microporous and Mesoporous Materials, 96, 14–20. 10.1016/j.micromeso.2006.06.014.Search in Google Scholar

Belver, C., Muńoz, M. A. B., & Vicente, M. A. (2002). Chemical activation of a kaolinite under acid and alkaline conditions. Chemistry of Materials, 14, 2033–2043. 10.1021/cm0111736.Search in Google Scholar

Chakravorty, A. K., & Ghosh, D. K. (1988). Synthesis and 980°C phase development of some mullite gels. Journal of the American Ceramic Society, 71, 978–987. 10.1111/j.1151-2916.1988.tb07568.x.Search in Google Scholar

Chen, D. S., Zhao, L. S., Liu, Y. H., Qi, T., Wang, J. C., & Wang, L. N. (2013). A novel process for recovery of iron, titanium and vanadium from titanomagnetite concentrates: NaOH molten salt roasting and water leaching processes. Journal of Hazardous Materials, 244–245, 588–595. 10.1016/j.jhazmat.2012.10.052.Search in Google Scholar

Di Valentin, C., Finazzi, E., Pacchioni, G., Selloni, A., Livraghi, S., Paganini, M. C., & Giamello, E. (2007). N-doped TiO2: Theory and experiment. Chemical Physics, 339, 44–56. 10.1016/j.chemphys.2007.07.020.Search in Google Scholar

Du, X. L., Wang, Y. Q., Su, X. H., & Li, J. G. (2009). Influences of pH value on the microstructure and phase transformation of aluminum hydroxide. Powder Technology, 192, 40–46. 10.1016/j.powtec.2008.11.008.Search in Google Scholar

Duan, J. M., & Gregory, J. (2003). Coagulation by hydrolysing metal salts. Advances in Colloid and Interface Science, 100–102, 475–502. 10.1016/s0001-8686(02)00067-2.Search in Google Scholar

El-Masry, M. H., Sadek, O. M., & Mekhemer, W. K. (2004). Purification of raw surface water using electro-coagulation method. Water, Air & Soil Pollution, 158, 373–385. 10.1023/b:wate.0000044857.02199.45.Search in Google Scholar

Farmer, V. C. (1974). The infrared spectra of minerals. London, UK: Mineralogical Society. 10.1180/mono-4.Search in Google Scholar

Huang, Y. X, Senos, A. M. R., Rocha, J., & Baptista, J. L. (1997). Gel formation in mullite precursors obtained via tetraethylorthosilicate (TEOS) pre-hydrolysis. Journal of Materials Science, 32, 105–110. 10.1023/a:1018575115 770.Search in Google Scholar

Huang, Y. X., Senos, A. M. R., & Baptista, J. L. (1998). Effect of excess SiO2 on the reaction sintering of aluminium titanate-25 vol. % mullite composites. Ceramics International, 24, 223–228. 10.1016/s0272-8842(97)00006-0.Search in Google Scholar

Jung, Y.S., Kim, D.W., Kim, Y.S., Park, E.K., & Baeck, S. H. (2008). Synthesis of alumina–titania solid solution by sol–gel method. Journal of Physics and Chemistry of Solids, 69, 1464–1467. 10.1016/j.jpcs.2007.10.037.Search in Google Scholar

Kim, J. H., Kim, M. W., & Yu, J. S. (2011). Recycle of silicate waste into mesoporous materials. Environmental Science & Technology, 45, 3695–3701. 10.1021/es103510r.Search in Google Scholar PubMed

Kimura, T., Suzuki, M., Ikeda, T., Kato, K., Maeda, M., & Tomura, S. (2006). Silica-based mesoporous materials derived from Ti containing layered polysilicate kanemite. Microporous and Mesoporous Materials, 95, 146–153. 10.1016/j.micromeso.2006.05.021.Search in Google Scholar

Kurc, B. (2014). Gel electrolytes based on poly(acrylonitrile)/ sulpholane with hybrid TiO2/SiO2 filler for advanced lithium polymer batteries. Electrochimica Acta, 125, 415–420. 10.1016/j.electacta.2014.01.117.Search in Google Scholar

Lee, S. O., Jung, K. H., Oh, C. J., Lee, Y. H., Tran, T., & Kim, M. J. (2009). Precipitation of fine aluminium hydroxide from Bayer liquors. Hydrometallurgy, 98, 156–161. 10.1016/j.hydromet.2009.04.014.Search in Google Scholar

Li, L.S., Liu, J. B., Wu, X. R., Ren, X., Bing, W. B., & Wu, L. S. (2010). Influence of Al2O3 on equilibrium sinter phase in N2 atmosphere. ISIJ International, 50, 327–329. 10.2355/isijinternational.50.327.Search in Google Scholar

Li, L. S., & Lu, T. T. (2011). Condensation mechanism and influencing factor of stability of complicated silicic acid system. AICHE Journal, 57, 1339–1343. 10.1002/aic.12374.Search in Google Scholar

Liu, Q., Wang, A. Q., Wang, X. H., Gao, P., Wang, X. D., & Zhang, T. (2008). Synthesis, characterization and catalytic applications of mesoporous γ-alumina from boehmite sol. Microporous and Mesoporous Materials, 111, 323–333. 10.1016/j.micromeso.2007.08.007.Search in Google Scholar

Liu, P.C., Zhu, Y.Z., Ma, J.H., Yang, S.G., Gong, J.H., & Jian, X. (2013). Effect of boehmite sol on the crystallization behaviour and densification of mullite formed from a sol–gel precursor. Progress in Natural Science: Materials International, 23, 145–151. 10.1016/j.pnsc.2013.02.004.Search in Google Scholar

Lü, H. H., Li, N., Wu, X. R., Li, L. S., Gao, Z. F., & Shen, X. M. (2013). A novel conversion of Ti-bearing blast-furnace slag into water splitting photocatalyst with visible-light-response. Metallurgical and Materials Transaction B, 44, 1317–1320. 10.1007/s11663-013-9973-y.Search in Google Scholar

Matsuda, A., Higashi, Y., Tadanaga, K., & Tatsumisago, M. (2006). Hot-water treatment of sol–gel derived SiO2–TiO2 microparticles and application to electrophoretic deposition for thick films. Journal of Materials Science, 41, 8101–8108. 10.1007/s10853-006-0419-7.Search in Google Scholar

Oikonomou, P., Dedeloudis, C., Stournaras, C. J., & Ftikos, C. (2007). Stabilized tialite–mullite composites with low thermal expansion and high strength for catalytic converters. Journal of the European Ceramic Society, 27, 3475–3482. 10.1016/j.jeurceramsoc.2006.07.020.Search in Google Scholar

Okada, K., & Otsuka, N. (1986). Characterization of the spinel phase from SiO2–Al2O3 xerogels and the formation process of mullite. Journal of the American Ceramic Society, 69, 652–656. 10.1111/j.1151-2916.1986.tb07466.x.Search in Google Scholar

Periyat, P., Baiju, K. V., Mukundan, P., Pillai, P. K., & Warrier, K. G. K. (2008). High temperature stable mesoporous anatase TiO2 photocatalyst achieved by silica addition. Applied Catalysis A, 349, 13–19. 10.1016/j.apcata.2008. 07.022.Search in Google Scholar

Pourbaix, M. (1974). Atlas of electrochemical equilibria in aqueous solutions. Oxford, UK: Pergamon.Search in Google Scholar

Richmond, W. R., Jones, R. L., & Fawell, P. D. (1998). The relationship between particle aggregation and rheology in mixed silica–titania suspensions. Chemical Engineering Journal, 71, 67–75. 10.1016/s1385-8947(98)00105-3.Search in Google Scholar

Schneider, H., & Komarneni, S. (2005). Mullite. Weinheim, Germany: Wiley. 10.1002/3527607358.Search in Google Scholar

Sobhani, M., Ebadzadeh, T., & Rahimipour, M. R. (2014). Formation and densification behavior of reaction sintered alumina-20 wt. % aluminium titanate nano-composites. International Journal of Refractory Metals and Hard Materials, 47, 49–53. 10.1016/j.ijrmhm.2014.06.018.Search in Google Scholar

Wellia, D. V., Xu, Q. C., Sk, M. A., Lim, K. H., Lim, T. M., & Tan, T. T. Y. (2011). Experimental and theoretical studies of Fe-doped TiO2 films prepared by peroxo sol–gel method. Applied Catalysis A, 401, 98–105. 10.1016/j.apcata.2011.05.003.Search in Google Scholar

Wu, Z.J., Yue, H. F., Li, L. S., Jiang, B.F., Wu, X.R., & Wang, P. (2010). Synthesis and electrochemical properties of multi-doped LiFePO4/C prepared from the steel slag. Journal of Power Sources, 195, 2888–2893. 10.1016/j.jpowsour.2009.11.058.Search in Google Scholar

Wu, X. R., Wang, H. H., Li, L. S., Lü, H. H., Wu, Z. J., & Shen, X. M. (2013a). Synthesis of cordierite powder from blast furnace slag. Transactions of the Indian Ceramic Society, 72, 197–200. 10.1080/0371750x.2013.851622.Search in Google Scholar

Wu, X. R., Lü, H. H., Li, L. S., Wang, P., Shen, X. M., Zhu, J. H., Cao, F. B., & Li, M. H. (2013b). China Patent No. 201110101537.3. Beijing, China: China Patent & Trademark Office. http://www.pss-system.gov.cn/sipopublicsearch/search/searchHome-searchIndex.shtml?params=991CFE73D4DF553253D44E119219BF31366856FF4B1522 26CAE4DB031259396ASearch in Google Scholar

Xie, X., Sun, J., Liu, Y., & Jiang, W. (2010). Use of silica sol as a transient phase for fabrication of aluminium titanate–mullite ceramic composite. Scripta Materialia, 63, 641–644. 10.1016/j.scriptamat.2010.05.038.Search in Google Scholar

Zhou, S. X., Antonietti, M., & Niederberger, M. (2007). Low-temperature synthesis of γ-alumina nanocrystals from aluminum acetylacetonate in nonaqueous media. Small, 3, 763–767. 10.1002/smll.200700027.Search in Google Scholar PubMed

Received: 2016-1-7
Revised: 2016-5-20
Accepted: 2016-5-20
Published Online: 2016-9-28
Published in Print: 2016-12-1

© 2016 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/chempap-2016-0100/html
Scroll to top button