Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 29, 2015

Antioxidative properties of Sambacus nigra extracts

  • Dominika Topoľská EMAIL logo , Katarína Valachová , Peter Rapta , Stanislav Šilhár , Elena Panghyová , Anton Horváth and Ladislav Šoltés
From the journal Chemical Papers

Abstract

Potential protective effects of elderberry (Sambucus nigra) extracts against oxidative degradation of hyaluronan (HA) were detected in vitro. To induce free-radical-mediated HA degradation, Weissberger’s biogenic oxidative system, which mimics the situation of acute inflammation, was applied. Time- and dose-dependent changes of dynamic viscosity of the HA solutions in the presence and absence of two elderberry extracts produced in 2006 and 2012 were recorded by rotational viscometry (RV). Radical scavenging capacity of both extracts was investigated by the spectrocolorimetric ABTS [2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt] assay and the “inverted” ABTS assay. Oxygen consumption of the system oxidizing HA either in the absence or presence of the elderberry extracts was determined. The results of RV revealed that an addition of the newer extract (2012) promoted the inhibition of HA degradation more markedly compared to the older extract (2006). The same effect of both extracts on ABTS.+ scavenging was observed. Inverted ABTS assay demonstrated that colorful substances were not responsible for the radicalscavenging activity. Results of oximetry demonstrated that the effect of the extract from 2006 was more significant than that of the extract from 2012.

References

Abuja, P. M., Murkovic, M., & Pfannhauser, W. (1998). Antioxidant and prooxidant activities of elderberry (Sambucus nigra) extract in low-density lipoprotein oxidation. Journal of Agricultural and Food Chemistry, 46, 4091-4096. DOI: 10.1021/jf980296g. Thorne Research (2005). Sambucus nigra (Elderberry). Alternative Medicine Review, 10, 51-55.Search in Google Scholar

Barak, V., Birkenfeld, S., Halperi, T., & Kalickman, I. (2002). The effect of herbal remedies on the production of human inflammatory and anti-inflammatory cytokines. Israel Medical Association Journal, 4(Supplement), 919-922.Search in Google Scholar

Bratu, M. M., Doroftei, E., Negreanu-Pirjol, T., Hostina, C., & Porta, S. (2012). Determination of antioxidant activity and toxicity of Sambucus nigra fruit extract using alternative methods. Biotechnology, 50, 177-182.Search in Google Scholar

Cao, G., & Prior, R. L. (1999). Anthocyanins are detected in human plasma after oral administration of an elderberry extract. Clinical Chemistry, 45, 574-576.10.1093/clinchem/45.4.574Search in Google Scholar

Fuleki, T., & Francis, F. J. (1968). Quantitative methods for antocyanins. Journal of Food Science, 33, 73-77. DOI: 10.1111/j.1365-2621.1968.tb00887.x.10.1111/j.1365-2621.1968.tb00887.xSearch in Google Scholar

Hrabárová, E., Valachová, K., Rychlý, J., Rapta, P., Sasinková, V., Malíková, M., & Šoltés, L. (2009). High-molar-mass hyaluronan degradation by Weissberger’s system: Pro- and anti-oxidative effects of some thiol compounds. Polymer Degradation and Stability, 94, 1867-1875. DOI: 10.1016/j. polymdegradstab.2009.05.007.Search in Google Scholar

Hrabárová, E., Valachová, K., Rapta, P., & Šoltés, L. (2010). An alternative standard for Trolox-equivalent antioxidantcapacity estimation based on thiol antioxidants. Comparative 2,2′-azinobis[3-ethylbenzothiazoline-6-sulfonic acid] decolorization and rotational viscometry study regarding hyaluronan degradation. Chemistry & Biodiversity, 7, 2191-2200. DOI: 10.1002/cbdv.201000019.10.1002/cbdv.201000019Search in Google Scholar

Nussbaum, G., & Levine, W. Z. (2008). EP Patent No. WO 2008,142,619 A1. Geneva, Switzerland: World Intellectual Property Organization.Search in Google Scholar

Jabłońska-Ry´s, E., Zalewska-Korona, M., & Kalbarczyk, J. (2009). Antioxidant capacity, ascorbic acid and phenolic content in wild edible fruits. Journal of Fruit and Ornamental Plant Research, 17, 115-120.Search in Google Scholar

Milbury, P. E., Cao, G. H., Prior, R. L., & Blumberg, J. (2002). Bioavailablility of elderberry anthocyanins. Mechanisms of Ageing and Development, 123, 997-1006. DOI: 10.1016/s0047-6374(01)00383-9.10.1016/S0047-6374(01)00383-9Search in Google Scholar

Murkovic, M., Mülleder, U., Adam, U., & Pfannhauser, W. (2001). Detection of anthocyanins from elderberry juice in human urine. Journal of the Science of Food and Agriculture, 81, 934-937. DOI: 10.1002/jsfa.910.10.1002/jsfa.910Search in Google Scholar

Mustafa, A., Sezai, E., & Murat, T. (2009). Physico-chemical characteristics of some wild grown European elderberry (Sambucus nigra L.) genotypes. Pharmacognosy Magazine, 5, 320-323. DOI: 10.4103/0973-1296.58153.10.4103/0973-1296.58153Search in Google Scholar

Rapta, P., Valachová, K., Gemeiner, P., & Šoltés, L. (2009). High-molar-mass hyaluronan behavior during testing its radical scavenging capacity in organic and aqueous media: Effects of the presence of manganese(II) ions. Chemistry & Biodiversity, 6, 162-169. DOI: 10.1002/cbdv.200800075.10.1002/cbdv.200800075Search in Google Scholar

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26, 1231-1237. DOI: 10.1016/s0891-5849(98)00315-3.10.1016/S0891-5849(98)00315-3Search in Google Scholar

Shipp, J., & El-Sayed, M. A. A. (2010). Food applications and physiological effects of anthocyanins as functional food ingredients. The Open Food Science Journal, 4, 7-22. DOI: 10.2174/1874256401004010007.10.2174/1874256401004010007Search in Google Scholar

Schmitzer, V., Veberic, R., Slatnar, A., & Stampar, F. (2010). Elderberry (Sambucus nigra L.) wine: A product rich in health promoting compounds. Journal of Agricultural and Food Chemistry, 58, 10143-10146. DOI: 10.1021/jf102083s.10.1021/jf102083sSearch in Google Scholar PubMed

Schrøder-Aasen, T., Molden, G., & Nilsen, O. G. (2012). In vitro inhibition of CYP3A4 by the multiherbal commercial product sambucus force and its main constituents Echinacea purpurea and Sambucus nigra. Phytotherapy Research, 26, 1606-1613. DOI: 10.1002/ptr.4619.10.1002/ptr.4619Search in Google Scholar

Šoltés, L., Brezová, V., Stankovská, M., Kogan, G., & Gemeiner, P. (2006). Degradation of high-molecular-weight hyaluronan by hydrogen peroxide in the presence of cupric ions. Carbohydrate Research, 341, 639-644. DOI: 10.1016/j.carres.2006.01. 014.Search in Google Scholar

Šoltés, L., Kogan, G., Stankovská, M., Mendichi, R., Rychlý, J., Schiller, J., & Gemeiner, P. (2007). Degradation of highmolar- mass hyaluronan and characterization of fragments. Biomacromolecules, 8, 2697-2705. DOI: 10.1021/bm070309b.10.1021/bm070309bSearch in Google Scholar

Stankovská, M., Hrabárová, E., Valachová, K., Molnárová, M., Gemeiner, P., & Šoltés, L. (2006). The degradative action of peroxynitrite on high-molecular-weight hyaluronan. Neuroendocrinology Letters, 27, 31-34.Search in Google Scholar

Stern, R., Kogan, G., Jedrzejas, M. J., & Šoltés, L. (2007). The many ways to cleave hyaluronan. Biotechnology Advances, 25, 537-557. DOI: 10.1016/j.biotechadv.2007.07.001.10.1016/j.biotechadv.2007.07.001Search in Google Scholar

Valachová, K., Vargová, A., Rapta, P., Hrabárová, E., Dráfi, F., Bauerová, K., Juránek, I., & Šoltés, L. (2011). Aurothiomalate as preventive and chain-breaking antioxidant in radical degradation of high-molar-mass hyaluronan. Chemistry & Biodiversity, 8, 1274-1283. DOI: 10.1002/cbdv.201000351.10.1002/cbdv.201000351Search in Google Scholar

Veberic, R., Jakopic, J., Stampar, F., & Schmitzer, V. (2009). European elderberry (Sambucus nigra L.) rich in sugars, organic acids, anthocyanins and selected polyphenols. Food Chemistry, 114, 511-515. DOI: 10.1016/j.foodchem.2008.09. 080.Search in Google Scholar

Verner, Z., Čermáková, P., Škodová, I., Kováčová, B., Lukeš, J., & Horváth, A. (2014). Comparative analysis of respiratory chain and oxidative phosphorylation in Leishmania tarentolae, Crithidia fasciculata, Phytomonas serpens and procyclic stage of Trypanosoma brucei. Molecular and Biochemical Parasitology, 193, 55-65. DOI: 10.1016/j.molbiopara.2014.02. 003.Search in Google Scholar

Youdim, K. A., Martin, A., & Joseph, J. A. (2000). Incorporation of the elderberry anthocyanins by endothelial cells increases protection against oxidative stress. Free Radical Biology and Medicine, 29, 51-60. DOI: 10.1016/s0891-5849(00)00329-4.10.1016/S0891-5849(00)00329-4Search in Google Scholar

Žemlička, L., Fodran, P., Lukeš, V., Vagánek, A., Slováková, M., Staško, A., Dubaj, T., Liptaj, T., Karabín, M., Birošová, L., & Rapta, P. (2014). Physicochemical and biological properties of luteolin-7-O-β-D-glucoside (cynaroside) isolated from Anthriscus sylvestris (L.) Hoffm. Monatshefte für Chemie - Chemical Monthly, 145, 1307-1318. DOI: 10.1007/s00706-014-1228-3. 10.1007/s00706-014-1228-3Search in Google Scholar

Received: 2014-10-24
Revised: 2015-4-2
Accepted: 2015-4-10
Published Online: 2015-5-29
Published in Print: 2015-9-1

© Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 29.5.2024 from https://www.degruyter.com/document/doi/10.1515/chempap-2015-0138/html
Scroll to top button