Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 28, 2014

Interactions of antifouling monolayers: Energy transfer from excited albumin molecule to phenol red dye

  • Hui Xu , Robert Wallace and Maria Hepel EMAIL logo
From the journal Chemical Papers

Abstract

Albumin, as an antifouling agent preventing non-specific adsorption, is widely applied in biosensor construction and in the design of nanocarriers for theranostic applications. However, albumin is not completely inert and it interacts with many endogenous and exogenous compounds. The present work investigates the interactions of bovine serum albumin (BSA) with phenol red dye (PR), a common component of cell-growth media. PR was found to bind to BSA, with the affinity constant KA = (2.5 ± 0.8) × 105 L mol−1, and that it quenches the intrinsic BSA fluorescence through the F¨orster non-radiative resonance energy transfer (FRET) via static modes, with critical FRET distance of R0 = 2.65 nm. Synchronous fluorescence spectroscopy measurements indicated a conformational transition of BSA in the presence of PR to a conformation with tyrosine residues surrounded by a more hydrophobic environment. Thermodynamic parameters, ΔH°, ΔG° and ΔS°, determined using fluorescence and isothermal titration microcalorimetry, indicated that entropic contribution played a major role at ambient temperature. It was also found that common metal ions increased KA but Ca2+ and Fe3+ decreased it.

References

Akdogan, Y., Reichenwallner, J., & Hinderberger, D. (2012). Evidence for water-tuned structural differences in proteins: An approach emphasizing variations in local hydrophilicity. PLoS One, 7, e45681. DOI: 10.1371/journal.pone.0045681.10.1371/journal.pone.0045681Search in Google Scholar

Axelsson, I. (1978). Characterization of proteins and other macromolecules by agarose gel chromatography. Journal of Chromatography A, 152, 21-32. DOI: 10.1016/s0021-9673(00)85330-3.10.1016/S0021-9673(00)85330-3Search in Google Scholar

Carter, D., & Ho, J. X. (1994). Structure of serum albumin. In C. B. Anfinsen, J. T. Edsall, F. M. Richards, & D. S. Eisenberg (Eds.), Advances in protein chemistry (Vol. 45, pp. 153-203). New York, NY, USA: Academic Press.Search in Google Scholar

Cooper, M. A. (2003). Label-free screening of bio-molecular interactions. Analytical and Bioanalytical Chemistry, 377, 834-842. DOI: 10.1007/s00216-003-2111-y.10.1007/s00216-003-2111-ySearch in Google Scholar

Dam, T. K., & Brewer, C. F. (2002). Thermodynamic studies of lectin-carbohydrate interactions by isothermal titration calorimetry. Chemical Reviews, 102, 387-430. DOI: 10.1021/cr000401x.10.1021/cr000401xSearch in Google Scholar

Doyle, M. L. (1997). Characterization of binding interactions by isothermal titration calorimetry. Current Opinion in Biotechnology, 8, 31-35. DOI: 10.1016/s0958-1669(97)80154-1.10.1016/S0958-1669(97)80154-1Search in Google Scholar

Feng, X. Z., Jin, R. X., Qu, Y., & He, X. W. (1996). Studies of the ions’ effect on the binding interaction between HP and BSA. Chemical Journal of Chinese Universities, 17, 866-869.Search in Google Scholar

Ferrer, M. L., Duchowicz, R., Carrasco, B., de la Torre, J. G., & Acu˜na, A. U. (2001). The conformation of serum albumin in solution: A combined phosphorescence depolarizationhydrodynamic modeling study. Biophysical Journal, 80, 2422-2430. DOI: 10.1016/s0006-3495(01)76211-x.10.1016/S0006-3495(01)76211-XSearch in Google Scholar

Förster, T., & Sinanoglu, O. (1966). Delocalized excitation and excitation transfer. In O. Sinanoglu (Ed.), Modern quantum chemistry (Vol. 3, pp. 93). New York, NY, USA: Academic Press.Search in Google Scholar

Fujita, J. Y., Mori, I., Toyoda, M., Kato, K., Nakamura, M., & Nakanishi, T. (1990). Simple and sensitive spectrophotometric determination of albumin with o-sulfophenylfluoroneuranium( VI) complex, and binding study. Chemical and Pharmaceutical Bulletin, 38, 956-959.10.1248/cpb.38.956Search in Google Scholar

Gifford, R., Kehoe, J. J., Barnes, S. L., Kornilayev, B. A., Alterman, M. A., & Wilson, G. S. (2006). Protein interactions with subcutaneously implanted biosensors. Biomaterials, 27, 2587-2598. DOI: 10.1016/j.biomaterials.2005.11.033.10.1016/j.biomaterials.2005.11.033Search in Google Scholar PubMed

Guo, C. C., Li, H. P., Zhang, X. B., & Tong, R. B. (2003). Synthesis of meso-5,10,15,20-tetra[4-(N-pyrrolidinyl)phenyl] porphyrin and its interaction with bovine serum albumin. Chemical Journal of Chinese Universities, 24, 282-287.Search in Google Scholar

He, W. Y., Li, Y., Xue, C. X., Hu, Z. D., Chen, X. G., & Sheng, F. L. (2005). Effect of Chinese medicine alpinetin on the structure of human serum albumin. Bioorganic and Medicinal Chemistry, 13, 1837-1845. DOI: 10.1016/j.bmc.2004.11. 038.Search in Google Scholar

Hepel, M. (2005). Effect of albumin on underpotential lead deposition and stripping on Ag-RDE. Electroanalysis, 17, 1401-1412. DOI: 10.1002/elan.200503288.10.1002/elan.200503288Search in Google Scholar

Hepel, M., & Stobiecka, M. (2007). Interactions of adsorbed albumin with underpotentially deposited copper on gold piezoelectrodes. Bioelectrochemistry, 70, 155-164. DOI: 10.1016/ j.bioelechem.2006.03.032.10.1016/j.bioelechem.2006.03.032Search in Google Scholar PubMed

Hepel, M., & Stobiecka, M. (2011). Comparative kinetic model of fluorescence enhancement in selective binding of monochlorobimane to glutathione. Journal of Photochemistry and Photobiology A: Chemistry, 225, 72-80. DOI: 10.1016/j.jphotochem.2011.09.028.10.1016/j.jphotochem.2011.09.028Search in Google Scholar

Hepel, M. (2012). Functional gold nanoparticles for biointerfaces. In M. Hepel, & C. J. Zhong (Eds.), Functional nanoparticles for bioanalysis, nanomedicine & bioelectronic devices (Vol. 1112, pp. 147-176). Oxford, UK: Oxford University Press. DOI: 10.1021/bk-2012-1112.ch006.10.1021/bk-2012-1112.ch006Search in Google Scholar

Hu, Y. J., Liu, Y., Wang, J. B., Xiao, X. H., & Qu, S. S. (2004). Study of the interaction between monoammonium monoammonium glycyrrhizinate and bovine serum albumin. Journal of Pharmaceutical and Biomedical Analysis, 36, 915-919. DOI: 10.1016/j.jpba.2004.08.021.10.1016/j.jpba.2004.08.021Search in Google Scholar

Hu, Y. J., Liu, Y., Zhang, L. X., Zhao, R. M., & Qu, S. S. (2005). Studies of interaction between colchicine and bovine serum albumin by fluorescence quenching method. Journal of Molecular Structure, 750, 174-178. DOI: 10.1016/j.molstruc. 2005.04.032.Search in Google Scholar

Jelesarov, I., & Bosshard, H. R. (1999). Isothermal titration calorimetry and differential scanning calorimetry as complementary tools to investigate the energetics of biomolecular recognition. Journal of Molecular Recognition, 12, 3-18. DOI: 10.1002/(SICI)1099-1352(199901/02)12:1<3::AIDJMR441> 3.0.CO;2-6.Search in Google Scholar

Kasai, S., Mizuma, T., & Awazu, S. (1987). Fluorescence energy transfer study of the relationship between the lone tryptophan residue and drug binding sites in human serum albumin. Journal of Pharmaceutical Sciences, 76, 387-392. DOI: 10.1002/jps.2600760510.10.1002/jps.2600760510Search in Google Scholar

Klajnert, B., & Bryszewska, M. (2002). Fluorescence studies on PAMAM dendrimers interactions with bovine serum albumin. Bioelectrochemistry, 55, 33-35. DOI: 10.1016/s1567-5394(01)00170-0.10.1016/S1567-5394(01)00170-0Search in Google Scholar

Kragh-Hansen, U. (1981). Effects of aliphatic fatty acids on the binding of Phenol Red to human serum albumin. Biochemical Journal, 195, 603-613.10.1042/bj1950603Search in Google Scholar

Ladbury, J. E., & Chowdhry, B. Z. (1996). Sensing the heat: the application of isothermal titration calorimetry to thermodynamic studies of biomolecular interactions. Chemistry and Biology, 3, 791-801. DOI: 10.1016/s1074-5521(96)90063-0.10.1016/S1074-5521(96)90063-0Search in Google Scholar

Lakowicz, J. R., & Weber, G. (1973). Quenching of fluorescence by oxygen. A probe for structural fluctuations in macromolecules. Biochemistry, 12, 4161-4170. DOI: 10.1021/ bi00745a020.10.1021/bi00745a020Search in Google Scholar

Leavitt, S., & Freire, E. (2001). Direct measurement of protein binding energetics by isothermal titration calorimetry. Current Opinion in Structural Biology, 11, 560-566. DOI: 10.1016/s0959-440x(00)00248-7.10.1016/S0959-440X(00)00248-7Search in Google Scholar

Li, G. X., Li, J. Q., Wei, Y. I., & Dong, C. (2005). Study on the interaction of tetraiodofluorescein and bovine serum albumin by fluorimetry. Spectroscopy and Spectral Analysis, 25, 1277-1280.Search in Google Scholar

Liu, X. F., Xia, Y. M., Fang, Y., Liu, L. L., & Zou, L. (2004). Interaction between bovine serum albumin and berberine chloride extracted from chinese herbs of Coptis chinensis Franch. Chemical Journal of Chinese Universities, 25, 2099-2103.Search in Google Scholar

Ma, H. M., Chen, X., Zhang, N., Han, Y. Y., Wu, D., Du, B., & Wei, Q. (2009). Spectroscopic studies on the interaction of a water-soluble cationic porphyrin with proteins. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 72, 465-469. DOI: 10.1016/j.saa.2008.10.019.10.1016/j.saa.2008.10.019Search in Google Scholar PubMed

MacFaddin, J. F. (2000). Biochemical tests for identification of medical bacteria (3rd ed.). Baltimore, MD, USA: Lippincott, Williams and Wilkins.Search in Google Scholar

Michnik, A. (2003). Thermal stability of bovine serum albumin. DSC study. Journal of Thermal Analysis and Calorimetry, 71, 509-519. DOI: 10.1023/a:1022851809481.10.1023/A:1022851809481Search in Google Scholar

Michnik, A., Michalik, K., Kluczewska, A., & Drzaga, Z. (2006). Comparative DSC study of human and bovine serum albumin. Journal of Thermal Analysis and Calorimetry, 84, 113-117. DOI: 10.1007/s10973-005-7170-1.10.1007/s10973-005-7170-1Search in Google Scholar

Nowicka, A. M., Kowalczyk, A., Stojek, Z., & Hepel, M. (2010). Nanogravimetric and voltammetric DNA-hybridization biosensors for studies of DNA damage by common toxicants and pollutants. Biophysical Chemistry, 146, 42-53. DOI: 10.1016/j.bpc.2009.10.003.10.1016/j.bpc.2009.10.003Search in Google Scholar

Pietrzyk, A., Suriyanarayanan, S., Kutner, W., Chitta, R., Zandler, M. E., & D’Souza, F. (2010). Molecularly im printed polymer (MIP) based piezoelectric microgravimetry chemosensor for selective determination of adenine. Biosensors and Bioelectronics, 25, 2522-2529. DOI: 10.1016/j.bios. 2010.04.015.Search in Google Scholar

Qi, Z. D., Zhou, B., Xiao, Q., Shi, C., Liu, Y., & Dai, J. (2008). Interaction of rofecoxib with human serum albumin: Determination of binding constants and the binding site by spectroscopic methods. Journal of Photochemistry and Photobiology A: Chemistry, 193, 81-88. DOI: 10.1016/j.jphotochem.2007.06.011.10.1016/j.jphotochem.2007.06.011Search in Google Scholar

Rodkey, F. L. (1961). The binding of phenol red by serum and by bovine serum albumin. Archives of Biochemistry and Biophysics, 94, 38-47. DOI: 10.1016/0003-9861(61)90008-x.10.1016/0003-9861(61)90008-XSearch in Google Scholar

Ross, P. D., & Subramanian, S. (1981). Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry, 20, 3096-3102. DOI: 10.1021/bi00514a017.10.1021/bi00514a017Search in Google Scholar PubMed

Sheikh, M. I., & Gerdes, U. (1978). Interaction of phenolsulphonphthalein dyes with rabbit plasma and rabbit serum albumin. Archives of Physiology and Biochemistry, 86, 613-623. DOI: 10.3109/13813457809055929.10.3109/13813457809055929Search in Google Scholar PubMed

Stobiecka, M., Hepel, M., & Radecki, J. (2005). Transient conformation changes of albumin adsorbed on gold piezoelectrodes. Electrochimica Acta, 50, 4873-4887. DOI: 10.1016/j. electacta.2005.03.066.Search in Google Scholar

Stobiecka, M., Deeb, J., & Hepel, M. (2009). Molecularlytemplated polymer matrix films for biorecognition processes: sensors for evaluating oxidative stress and redox buffering capacity. ECS Transactions, 19, 15-32. DOI: 10.1149/1.3253474.10.1149/1.3253474Search in Google Scholar

Stobiecka, M., Deeb, J., & Hepel, M. (2010). Ligand exchange effects in gold nanoparticle assembly induced by oxidative stress biomarkers: Homocysteine and cysteine. Biophysical Chemistry, 146, 98-107. DOI: 10.1016/j.bpc.2009.11.001.10.1016/j.bpc.2009.11.001Search in Google Scholar PubMed

Stobiecka, M., & Hepel, M. (2011a). Effect of buried potential barrier in label-less electrochemical immunodetection of glutathione and glutathione-capped gold nanoparticles. Biosensors and Bioelectronics, 26, 3524-3530. DOI: 10.1016/j.bios.2011.01.038.10.1016/j.bios.2011.01.038Search in Google Scholar PubMed

Stobiecka, M., & Hepel, M. (2011b). Double-shell gold nanoparticle- based DNA-carriers with poly-L-lysine binding surface. Biomaterials, 32, 3312-3321. DOI: 10.1016/j.biomaterials. 2010.12.064.Search in Google Scholar

Stobiecka, M., & Hepel, M. (2011c). Multimodal coupling of optical transitions and plasmonic oscillations in rhodamine B modified gold nanoparticles. Physical Chemistry Chemical Physics, 13, 1131-1139. DOI: 10.1039/c0cp00553c.10.1039/C0CP00553CSearch in Google Scholar

Stobiecka, M., Molinero, A. A., Cha_lupa, A., & Hepel, M. (2012). Mercury/homocysteine ligation-induced ON/OFFswitching of a T-T mismatch-based oligonucleotide molecular beacon. Analytical Chemistry, 84, 4970-4978. DOI: 10.1021/ac300632u.10.1021/ac300632uSearch in Google Scholar

Sułkowska, A., Rownicka, J., Bojko, B., Po´zycka, J., Zubik- Skupie´n, I., Su_lkowski, W. (2004). Effect of guanidine hydrochloride on bovine serum albumin complex with antithyroid drugs: fluorescence study. Journal of Molecular Structure, 704, 291-295. DOI: 10.1016/j.molstruc.2003.12.065.10.1016/j.molstruc.2003.12.065Search in Google Scholar

Turnbull, W. B., & Daranas, A. H. (2003). On the value of c: Can low affinity systems by studied by isothermal titration calorimetry. Journal of the American Chemical Society, 125, 14859-14866. DOI: 10.1021/ja036166s.10.1021/ja036166sSearch in Google Scholar

Valeur, B., & Brochon, J. C. (2001). New trends in fluorescence spectroscopy. Berlin, Germany: Springer. DOI: 10.1007/978-3-642-56853-4.10.1007/978-3-642-56853-4Search in Google Scholar

Whitesides, G. M., & Krishnamurthy, V. M. (2006). Designing ligands to bind proteins. Quarterly Reviews of Biophysics, 38, 385-395. DOI: 10.1017/s0033583506004240.10.1017/S0033583506004240Search in Google Scholar

Wright, A. K., & Thompson, M. R. (1975). Hydrodynamic structure of bovine serum albumin determined by transient electric birefringence. Biophysical Journal, 15, 137-141. DOI: 10.1016/s0006-3495(75)85797-3.10.1016/S0006-3495(75)85797-3Search in Google Scholar

Xu, H., & Hepel, M. (2011). “Molecular beacon”-based fluorescent assay for selective detection of glutathione and cysteine. Analytical Chemistry, 83, 813-819. DOI: 10.1021/ac102850y.10.1021/ac102850ySearch in Google Scholar PubMed

Yi, P. G., Liu, J. F., Shang, Z. C., & Yu, Q. S. (2001). Study on the interaction between methylene blue and bovine serum albumin by fluorescence spectroscopy. Spectroscopy and Spectral Analysis, 21, 826-828.Search in Google Scholar

Zhou, Q. Y., & Yu, Y. (2003). Interaction studies of 2-(8- hydroxyquinoline-5-sulfoacid-7-azo)-1,8-dihydroxy-3,6- naphthalene disulfoacid with bovine serum albumin. Chinese Journal of Analytical Chemistry, 31, 976-980. Search in Google Scholar

Received: 2014-4-21
Revised: 2014-6-7
Accepted: 2014-6-10
Published Online: 2014-11-28
Published in Print: 2015-1-1

© 2015 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 8.6.2024 from https://www.degruyter.com/document/doi/10.1515/chempap-2015-0015/html
Scroll to top button