Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 19, 2022

Bionomic study of the detritic bottoms dominated by macroalgae from the southern coast of Mallorca (Balearic Islands)

  • Sergi Joher

    Sergi Joher has a degree in Biology and a doctorate from the University of Girona (UdG). With other members of the UdG’s Algues Bentòniques Marines research group, he participated in several oceanographic campaigns of the Centre Oceanogràfic de les Balears (COB-IEO-CSIC) describing the deep-water macroalgal seabeds off the Mallorca and Menorca continental shelf. He is currently working in the COB-IEO-CSIC’s ECOBRED research group within the framework of the PESCAMED CINCO project, linked to the Plan Nacional de Datos Pesqueros del sector Pesquero Español (PNDB).

    , Sergi Martínez

    Sergi Martínez holds degrees in Biology at the University of Girona (UdG, 2014). He completed a Master’s degree in Environmental Impacts (UdG, 2015), with a study of detritic bototms of Balearic Islands, and a Master’s degree in Secondary School at the International University of La Rioja (2017). He’s currently a biology teacher in a secondary school.

    and Conxi Rodríguez-Prieto

    Conxi Rodríguez-Prieto is full professor of Botany at the University of Girona (UdG) and curator of the algae section of the Herbarium of the University of Girona (HGI). Her research focuses mainly on taxonomy of red algae, but she works too on ecophysiology and ecology of marine macroalgae.

    ORCID logo EMAIL logo
From the journal Botanica Marina

Abstract

This bionomic study of the detritic bottoms dominated by macroalgae from the south of Mallorca (Balearic Islands, Western Mediterranean) includes a quantitative description of the algal communities found in the area, as well as their bathymetric and geographical distribution. The results presented here are based on data collected in two oceanographic campaigns conducted in July 2012 and September 2014, using a Jennings beam trawl. A hierarchical group average agglomerative clustering, accompanied by the SIMPROF test, allowed the identification of seven different macroalgal communities, of which two are described here for the first time: the Cryptonemia longiarticulata fields and the Maërl beds of indeterminate rhodoliths. Depth and rhodolith abundance were the two main features driving the distribution of these communities. We found that seven species contributed 70% of the similarity between samples (SIMPER test), with the indeterminate species of rhodoliths (23.6%) and the encrusting fleshy red alga, Agissea inamoena (15.6%) being the most important. The methodology used for the sample selection and quantification processes turned out to be very efficient and faster than other methods used for the characterization of macroalgal communities from detritic bottoms, suggesting that this study could serve as a baseline for similar studies and for future management and conservation actions.


Corresponding author: Conxi Rodríguez-Prieto, Department of Environmental Sciences, Faculty of Sciences, University of Girona, M. Aurèlia Capmany 69, 17003 Girona, Spain, E-mail:

Funding source: Conselleria d’Agricultura, Medi Ambient i Territori de les Illes Balears

Funding source: CN Instituto Español de Oceanografía (IEO-CSIC)

About the authors

Sergi Joher

Sergi Joher has a degree in Biology and a doctorate from the University of Girona (UdG). With other members of the UdG’s Algues Bentòniques Marines research group, he participated in several oceanographic campaigns of the Centre Oceanogràfic de les Balears (COB-IEO-CSIC) describing the deep-water macroalgal seabeds off the Mallorca and Menorca continental shelf. He is currently working in the COB-IEO-CSIC’s ECOBRED research group within the framework of the PESCAMED CINCO project, linked to the Plan Nacional de Datos Pesqueros del sector Pesquero Español (PNDB).

Sergi Martínez

Sergi Martínez holds degrees in Biology at the University of Girona (UdG, 2014). He completed a Master’s degree in Environmental Impacts (UdG, 2015), with a study of detritic bototms of Balearic Islands, and a Master’s degree in Secondary School at the International University of La Rioja (2017). He’s currently a biology teacher in a secondary school.

Conxi Rodríguez-Prieto

Conxi Rodríguez-Prieto is full professor of Botany at the University of Girona (UdG) and curator of the algae section of the Herbarium of the University of Girona (HGI). Her research focuses mainly on taxonomy of red algae, but she works too on ecophysiology and ecology of marine macroalgae.

Acknowledgments

We thank all the scientific staff and the crew participating in the sampling at sea. We thank Marc Verlaque, Kike Ballesteros, Giovanni Furnari and Julio Afonso Carrillo for taxonomic help. The editor and reviewers are thanked for their comments that have clearly helped to improve the manuscript.

  1. Author contributions: Sergi Joher: data analysis, writing; Sergi Martínez: sampling, processing of samples, writing; Conxi Rodríguez-Prieto: conceived and designed the study, sampling, processing of samples, data analysis, writing.

  2. Research funding: Surveys at sea in 2012 and 2014 were carried out within the project DRAGONSAL (Caracterización del Ecosistema Bentónico de la Plataforma costera del area comprendida entre Sa Dragonera, Cap Ses Salines y Cala Figuera, Mallorca), co-funded by the Conselleria d’Agricultura, Medi Ambient i Territori de les Illes Balears and the CN Instituto Español de Oceanografía (IEO-CSIC).

  3. Conflict of interest statement: The authors declare that they have no conflicts of interest regarding this article.

References

Acosta, A., Canals, M., López-Martínez, J., Muñoz, A., Herranz, P., Urgeles, R., Palomo, C., and Casamor, J.L. (2002). The Balearic promontory geomorphology (Western Mediterranean): morphostructure and active processes. Geomorphology 49: 177–204, https://doi.org/10.1016/s0169-555x(02)00168-x.Search in Google Scholar

Adams, L.A., Maneveldt, G.W., Green, A., Karenyi, N., Parker, D., Samaai, T., and Kerwath, S. (2020). Rhodolith bed discovered off the South African coast. Diversity 12: 25, https://doi.org/10.3390/d12040125.Search in Google Scholar

Adey, W.H. and Adey, P.J. (1973). Studies of the biosystematics and ecology of the epilithic crustose Corallinaceae of the British Isles. Br. Phycol. J. 8: 343–407, https://doi.org/10.1080/00071617300650381.Search in Google Scholar

Adey, W.H. and McKibbin, D.L. (1970). Studies on the maerl species Phymatolithon calcareum (Pallas) nov. comb. and Lithothamnium corallioides Crouan in the Ria de Vigo. Bot. Mar. 13: 100–106.10.1515/botm.1970.13.2.100Search in Google Scholar

Amado-Filho, G.M., Maneveldt, G., Manso, R.C.C., Marins Rosa, B.V., Pacheco, M.R., and Guimarães, S.M.P.B. (2007). Structure of rhodolith beds from 4 to 55 meters deep along the southern coast of Espírito Santo State, Brazil. Cienc. Mar. 33: 399–410, https://doi.org/10.7773/cm.v33i4.1148.Search in Google Scholar

Augier, H. and Boudouresque, C.-F. (1978). Végétation marine de l’île de Port-Cros (Parc National). XVI: contribution à l’étude de l’épiflore du détritique côtier. Sci. Rep. Port-Cros Natl. Park 4: 101–125.Search in Google Scholar

Ballesteros, E. (1988). Composición y estructura de los fondos de maërl de Tossa de Mar (Girona, España). Collect. Bot. 17: 161–182, https://doi.org/10.3989/collectbot.1989.v17.137.Search in Google Scholar

Ballesteros, E. (1994). The deep-water Peyssonnelia beds from the Balearic islands (Western Mediterranean). Mar. Ecol. 15: 233–253, https://doi.org/10.1111/j.1439-0485.1994.tb00055.x.Search in Google Scholar

Ballesteros, E. and Zabala, M. (1993). El bentos: El marc físic. In: Alcover, J.A., Ballesteros, E., and Fornós, J.J. (Eds.), Història natural de l’arxipèlag de Cabrera. Monografies de la Societat d’Història Natural de les Balears, Vol. 2. Palma, pp. 663–685.Search in Google Scholar

Ballesteros, E., Zabala, M., Uriz, J.M., García-Rubiés, A., and Turón, X. (1993). El bentos: Les comunitats. In: Alcover, J.A., Ballesteros, E., and Fornós, J.J. (Eds.), Història natural de l’arxipèlag de Cabrera. Moll. Monografies de la Societat d’Història Natural de les Balears, Vol. 2. Palma, pp. 687–730.Search in Google Scholar

Barberá, C., Bordehore, C., Borg, J.A., Glémarec, M., Grall, J., Hall-Spencer, J.M., De La Huz, Ch., Lanfranco, E., Lastra, M., Moore, et al.. (2003). Conservation and management of northeast Atlantic and Mediterranean maerl beds. Aquat. Conserv. Mar. Freshw. Ecosyst. 13: S65–S76, https://doi.org/10.1002/aqc.569.Search in Google Scholar

Barberá, C., Moranta, J., Ordines, F., Ramón, M., de Mesa, A., Díaz-Valdés, M., Grau, A.M., and Massutí, E. (2012). Biodiversity and habitat mapping of Menorca Channel (western Mediterranean): implications for conservation. Biodivers. Conserv. 21: 701–728, https://doi.org/10.1007/s10531-011-0210-1.Search in Google Scholar

Basso, D. (1990). The calcareous alga Peyssonnelia rosa-marina Boudouresque and denizot, 1973 (Rhodophyceae, Peyssonneliaceae) in circalittoral soft bottoms of Tyrrhenian Sea. Quad. della Civica Stazione Idrobiol. Milano 17: 89–106.Search in Google Scholar

Basso, D. (1996). Soft bottom Mediterranean calcareous algae (non-geniculate Corallinaceae): distribution and ecology. Atti Ass. It. Oceanol. Limnol. 11: 225–234.Search in Google Scholar

Basso, D., Babbini, L., Ramos-Esplá, A.A., and Salomidi, M. (2017). Mediterranean rhodolith beds. In: Riosmena-Rodriguez, R., Nelson, W., and Aguirre, J. (Eds.), Rhodolith/Maërl beds: a global perspective. Springer, Cham, pp. 281–298.10.1007/978-3-319-29315-8_11Search in Google Scholar

Birkett, D.A., Maggs, C.A., and Dring, M.J. (1998). Maerl (volume V). An overview of dynamic and sensitivity characteristics for conservation management of marine SACs. Scottish Association for Marine Science (UK Marine SACs Project), Oban.Search in Google Scholar

Blunden, G., Farnham, W.F., Jephson, N., Fenn, R.H., and Plunkett, B.A. (1977). The composition of maërl from the Glenan islands of Southern Brittany. Bot. Mar. 20: 121–126, https://doi.org/10.1515/botm.1977.20.2.121.Search in Google Scholar

Bosence, D.W.J. (1983). Coralline algae from the Miocene of Malta. Palaeontology 26: 147–173.Search in Google Scholar

Bourcier, M. (1981). Nouvelles localisations de quelques facies des fonds detritiques côtiers dans le Parc National de Port-Cros (France, Méditerranée). Rapp. P-V. Reun. Cons. Int. Explor. Sci. Mer Médit. 27: 121–122.Search in Google Scholar

Canals, M. and Ballesteros, E. (1997). Production of carbonate particles by phytobenthic communities on the Mallorca-Menorca shelf, northwestern Mediterranean Sea. Deep-Sea Res. II 44: 611–629, https://doi.org/10.1016/s0967-0645(96)00095-1.Search in Google Scholar

Carpine, C. (1958). Recherches sur les fonds à Peyssonnelia polymorpha (Zan.) Schmitz de la région de Marseille. Bull. Inst. Oceanogr. (Monaco) 1125: 1–25.Search in Google Scholar

Clarke, K.R. and Warwick, R.M. (2001). Change in marine communities: an approach to statistical analysis and interpretation, 2nd ed. Plymouth Marine Laboratory: Plymouth.Search in Google Scholar

Clarke, K.R., Somerfield, P.J., and Gorley, R.N. (2008). Testing of null hypotheses in exploratory community analyses: similarity profiles and biota-environment linkage. J. Exp. Mar. Biol. Ecol. 366: 56–69, https://doi.org/10.1016/j.jembe.2008.07.009.Search in Google Scholar

de Buen, O. (1905). La région méditerranéenne des Baléares. Bull. Soc. Zool. Fr. 30: 98–106.Search in Google Scholar

de Buen, O. (1934). Resultados de la primera campaña biológica a bordo del Xauen en aguas de Mallorca (Abril 1933). Trab. Inst. Esp. Oceanogr. 6–11: 7–89.Search in Google Scholar

Dieuzeide, R. (1940). Étude d’un fond de pêche d’Algérie: la “gravelle de Castiglione”. Bull. Trav. Stn. Aquicul. Pêche Castiglione 1: 33–57.Search in Google Scholar

EU (2012). Directive 92/43/EEC of the European Parliament and of the Council of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora (Consolidated text). Off. J. L 206, 22/07/1992 P. 0007-0050.Search in Google Scholar

Feldmann, J. (1943). Contribution à l’étude de la flore marine de profondeur sur les côtes d’Algérie. Bull. Soc. Hist. Nat. Afr. Nord 34: 150–167.Search in Google Scholar

Fornós, J.J. and Ahr, W.M. (1997). Temperate carbonates on a modern, low-energy, isolated ramp; the Balearic platform, Spain. J. Sediment. Res. 67: 364–373.10.1306/D4268572-2B26-11D7-8648000102C1865DSearch in Google Scholar

Foster, M.S. (2001). Rhodoliths: between rocks and soft places. J. Phycol. 37: 659–667, https://doi.org/10.1046/j.1529-8817.2001.00195.x.Search in Google Scholar

Freiwald, A. and Henrich, R. (1994). Reefal coralline algal build‐ups within the Arctic Circle: morphology and sedimentary dynamics under extreme environmental seasonality. Sedimentology 41: 963–984, https://doi.org/10.1111/j.1365-3091.1994.tb01435.x.Search in Google Scholar

Funk, G. (1927). Die Algenvegetation des Golfs von Neapel. Pubbl. Stn. Zool. Napoli 7: 1–507.Search in Google Scholar

Giaccone, G., Alongi, G., Pizzuto, F., and Cossu, A. (1994). La vegetazione marina bentonica sciafila del Mediterraneo: III. Infralitorale e Circalitorale. Proposte di aggiornamento. Boll. Accad. Gioenia Sci. Nat. 27: 201–227.Search in Google Scholar

Grall, J. and Glémarec, M. (1997). Using biotic indices to estimate macrobenthic community perturbations in the Bay of Brest. Estuar. Coast Shelf Sci. 44: 43–53, https://doi.org/10.1016/s0272-7714(97)80006-6.Search in Google Scholar

Hall-Spencer, J.M. and Moore, P.G. (2000). Scallop dredging has profound, long-term impacts on maerl habitats. ICES J. Mar. Sci. 57: 1407–1415, https://doi.org/10.1006/jmsc.2000.0918.Search in Google Scholar

Hall-Spencer, J.M., Grall, J., Moore, P.G., and Atkinson, R.J.A. (2003). Bivalve fishing and maerl‐bed conservation in France and the UK—retrospect and prospect. Aquat. Conserv. Mar. Freshw. Ecosyst. 13: S33–S41, https://doi.org/10.1002/aqc.566.Search in Google Scholar

Hily, C., Potin, P., and Floc’h, J.-Y. (1992). Structure of subtidal algal assemblages on soft-bottom sediments: fauna/flora interactions and role of disturbances in the Bay of Brest, France. Mar. Ecol. Prog. Ser. 85: 115–130, https://doi.org/10.3354/meps085115.Search in Google Scholar

Hinojosa-Arango, G., Maggs, C.A., and Johnson, M.P. (2009). Like a rolling stone: the mobility of maerl (Corallinaceae) and the neutrality of the associated assemblages. Ecology 90: 517–528, https://doi.org/10.1890/07-2110.1.Search in Google Scholar PubMed

Huvé, H. (1954). Contribution à l’étude des fonds à Peyssonnelia polymorpha (Zan.) Schmitz de la région de Marseille. Recl. Trav. Stn. Mar. Endoume 12: 119–136.Search in Google Scholar

Huvé, H. (1956). Contribution à l’étude des fonds à Lithothamnion solutum(?) Foslie de la région de Marseille. Recl. Trav. Stn. Mar. Endoume 20: 105–134.Search in Google Scholar

Jacquotte, R. (1962). Étude des fonds de maërl de Mediteranée. Recl. Trav. Stn. Mar. Endoume 26: 141–235.Search in Google Scholar

Joher, S., Ballesteros, E., Cebrian, E., Sánchez, N., and Rodríguez-Prieto, C. (2012). Deep-water macroalgal-dominated coastal detritic assemblages on the continental shelf off Mallorca and Menorca (Balearic islands, Western Mediterranean). Bot. Mar. 55: 485–497, https://doi.org/10.1515/bot-2012-0113.Search in Google Scholar

Joher, S., Ballesteros, E., and Rodríguez-Prieto, C. (2015). Contribution to the study of deep coastal detritic bottoms: the algal communities of the continental shelf off the Balearic Islands, Western Mediterranean. Mediterr. Mar. Sci. 16: 573–590, https://doi.org/10.12681/mms.1249.Search in Google Scholar

Joher, S., Ballesteros, E., and Rodríguez-Prieto, C. (2016). Macroalgal-dominated coastal detritic communities from the Western Mediterranean and the Northeastern Atlantic. Mediterr. Mar. Sci. 17: 476–495, https://doi.org/10.12681/mms.1438.Search in Google Scholar

Kamenos, N.A., Moore, P.G., and Hall-Spencer, J.M. (2004a). Attachment of the juvenile queen scallop (Aequipecten opercularis (L.) to maerl in mesocosm conditions; juvenile habitat selection. J. Exp. Mar. Biol. Ecol. 306: 139–155, https://doi.org/10.1016/j.jembe.2003.10.013.Search in Google Scholar

Kamenos, N.A., Moore, P.G., and Hall-Spencer, J.M. (2004b). Small-scale distribution of juvenile gadoids in shallow inshore waters; what role does maerl play? J. Mar. Sci. 61: 422–429, https://doi.org/10.1016/j.icesjms.2004.02.004.Search in Google Scholar

Kamenos, N.A., Moore, P.G., and Hall-Spencer, J.M. (2004c). Maerl grounds provide both refuge and high growth potential for juvenile queen scallops (Aequipecten opercularis L.). J. Exp. Mar. Biol. Ecol. 313: 241–254, https://doi.org/10.1016/j.jembe.2004.08.007.Search in Google Scholar

Kamenos, N.A., Burdett, H.L., and Darrenougue, N. (2017). Coralline algae as recorders of past climatic and environmental conditions. In: Riosmena-Rodríguez, R., Nelson, W., and Aguirre, J. (Eds.), Rhodolith/maërl beds: a global perspective. Springer, Cham, pp. 27–53.10.1007/978-3-319-29315-8_2Search in Google Scholar

Klein, J.C. and Verlaque, M. (2009). Macroalgal assemblages of disturbed coastal detritic bottoms subject to invasive species. Estuar. Coast Shelf Sci. 82: 461–468, https://doi.org/10.1016/j.ecss.2009.02.003.Search in Google Scholar

Kruskal, J.B. and Wish, M. (1978). Multidimensional scaling. Sage Publications, Newbury Park, California.10.4135/9781412985130Search in Google Scholar

Littler, M.M., Littler, D.S., and Hanisak, M.D. (1991). Deep-water rhodolith distribution, productivity, and growth history at sites of formation and subsequent degradation. J. Exp. Mar. Biol. Ecol. 150: 163–182, https://doi.org/10.1016/0022-0981(91)90066-6.Search in Google Scholar

Llimona, X. (Ed.) (1985). Història natural dels països Catalans. Plantes inferiors. Enciclopèdia catalana, Vol. 4. Barcelona.Search in Google Scholar

Lüning, K. (1990). Seaweeds. Their environment, biogeography, and ecophysiology, 2n ed. Wiley-Interscience, New York.Search in Google Scholar

Marrack, E.C. (1999). The relationship between water motion and living rhodolith beds in the southwestern Gulf of California, Mexico. Palaios 14: 159–171, https://doi.org/10.2307/3515371.Search in Google Scholar

Martin, S. and Gattuso, J.P. (2009). Response of Mediterranean coralline algae to ocean acidifi cation and elevated temperature. Global Change Biol. 15: 2089–2100, https://doi.org/10.1111/j.1365-2486.2009.01874.x.Search in Google Scholar

Martin, S. and Hall-Spencer, J.M. (2017). Effects of ocean warming and acidification on rhodolith/maërl beds. In: Riosmena-Rodríguez, R., Nelson, W., and Aguirre, J. (Eds.), Rhodolith/maërl beds: a global perspective. Springer, Cham, pp. 55–85.10.1007/978-3-319-29315-8_3Search in Google Scholar

Mazza, A. (1903). Flora marina del golfo di Napoli. Nuova Notarisia 14: 97–105.Search in Google Scholar

Nelson, W.A. (2009). Calcified macroalgae—critical to coastal ecosystems and vulnerable to change: a review. Mar. Freshw. Res. 60: 787–801, https://doi.org/10.1071/mf08335.Search in Google Scholar

Norse, E.A., Brooke, S., Cheung, W.W.L., Clark, M.R., Ekeland, I., Froese, R., Gjerde, K.M., Haedrich, R.L., Heppell, S.S., Morató, T., et al.. (2012). Sustainability of deep-sea fisheries. Mar. Pol. 36: 307–320, https://doi.org/10.1016/j.marpol.2011.06.008.Search in Google Scholar

Ordines, F., Bauzá, M., Sbert, M., Roca, P., Gianotti, M., and Massutí, E. (2015). Red algae beds increase the condition of nekto-benthic fish. J. Sea Res. 95: 115–123, https://doi.org/10.1016/j.seares.2014.08.002.Search in Google Scholar

Parenzan, P. (1932). Sull’incompatibilità di convivenza fra Isopodied. Ital. J. Zool. 3: 161–167, https://doi.org/10.1080/11250003209429217.Search in Google Scholar

Parenzan, P. (1960). Aspetti biocenotici dei fondi ad algue litoproduttrici del mediterraneo. Rapp. P-V. Reun. Cons. Int. Explor. Sci. Mer Médit. 15: 87–107.Search in Google Scholar

Peña, V., Bárbara, I., Grall, J., Maggs, C.A., and Hall-Spencer, J.M. (2014). The diversity of seaweeds on maerl in the NE Atlantic. Mar. Biodivers. 44: 533–551, https://doi.org/10.1007/s12526-014-0214-7.Search in Google Scholar

Pérès, J.M. (1985). History of the Mediterranean biota and the colonization of the depths. In: Margalef, R. (Ed.), Western Mediterranean. Pergamon, Oxford, pp. 200–234.Search in Google Scholar

Pérès, J.M. and Picard, J. (1955). Biotopes et biocoenoses de la Méditerranée occidentale compares à ceux de la Manche et de l’Atlantique nord-oriental. Arch. Zool. Exp. Gen. 92: 1–71.Search in Google Scholar

Pérès, J.M. and Picard, J. (1963). Aperçu sommaire sur les peuplements marins benthiques entourant l’ile de Port-Cros. Terre Vie 110: 336–448.10.3406/revec.1963.6167Search in Google Scholar

Pérès, J.M. and Picard, J. (1964). Nouveau manuel de bionomie benthique de la Mer Méditerranée. Recl. Trav. Stn. Mar. Endoume 31: 1–137.Search in Google Scholar

PNUE/UICN/GIS Posidonie (1990). Livre rouge “Gérard Vuignier” des végétaux, peuplements et paysages marins menacés de Méditerranée. In: MAP technical reports series no. 43. UNEP, Athens.Search in Google Scholar

Potin, P., Floc’h, J.Y., Augris, C., and Cabioch, J. (1990). Annual growth rate of the calcareous red alga Lithothamnion corallioides (Corallinales, Rhodophyta) in the Bay of Brest, France. In: Lindstrom, S.C., and Gabrielson, P.W. (Eds.), Thirteenth international seaweed symposium. Springer, Dordrecht, pp. 263–267.10.1007/978-94-009-2049-1_37Search in Google Scholar

Potter, I.C., Bird, D.J., Claridge, P.N., Clarke, K.R., Hyndes, G.A., and Newton, L.C. (2001). Fish fauna of the Seven Estuary and are there long-term changes in the recruitment patterns of the main marine species correlated? J. Exp. Mar. Biol. Ecol. 258: 15–37, https://doi.org/10.1016/s0022-0981(00)00343-9.Search in Google Scholar PubMed

Puig, P., Canals, M., Company, J.B., Martín, J., Amblas, D., Lastras, G., Palanques, A., and Calafat, A.M. (2012). Ploughing the deep sea floor. Nature 489: 286–289, https://doi.org/10.1038/nature11410.Search in Google Scholar PubMed

Riosmena-Rodríguez, R., Nelson, W., and Aguirre, J. (Eds.) (2017). Rhodolith/maërl beds: a global perspective. Springer International Publishing, Switzerland, p. 368.10.1007/978-3-319-29315-8Search in Google Scholar

Rodríguez-Prieto, C., Ballesteros, E., Boisset, F., and Afonso-Carrillo, J. (2013). Guía de las macroalgas y fanerógamas marinas del Mediterráneo Occidental. Omega, S.A., Barcelona.Search in Google Scholar

Salat, J. and Font, J. (1985). Masses d’aigua i circulació a la Mediterrània. In: Cardelús, J. (Ed.), L’oceanografia-Introducció a l’ecologia marina mediterrània. Col·lecció de Quaderns d’Ecologia Aplicada. Diputació de Barcelona, Barcelona, pp. 61–98.Search in Google Scholar

Shannon, C.E. (1948). A mathematical theory of communication. Bell Syst. Tech. J. 27: 379–423, https://doi.org/10.1002/j.1538-7305.1948.tb01338.x.Search in Google Scholar

Steller, D.L., Riosmena-Rodríguez, R., Foster, M.S., and Roberts, C.A. (2003). Rhodolith bed diversity in the Gulf of California: the importance of rhodolith structure and consequences of disturbance. Aquat. Conserv. Mar. Freshw. Ecosyst. 13: 5–20, https://doi.org/10.1002/aqc.564.Search in Google Scholar

Steneck, R.S. (1986). The ecology of coralline algal crusts: convergent patterns and adaptive strategies. Annu. Rev. Ecol. Evol. Syst. 17: 273–303, https://doi.org/10.1146/annurev.es.17.110186.001421.Search in Google Scholar

Teichert, S., Woelkerling, W., Rüggeberg, A., Wisshak, M., Piepenburg, D., Meyerhöfer, M., Form, A., and Freiwald, A. (2014). Arctic rhodolith beds and their environmental controls (Spitsbergen, Norway). Facies 60: 15–37, https://doi.org/10.1007/s10347-013-0372-2.Search in Google Scholar

Templado, J., Ballesteros, E., Galparsoro, I., Borja, Á., Serrano, A., Martín, L., and Brito, A. (2012). Guía interpretativa. Inventario español de hábitats marinos. Ministerio de Agricultura, Alimentación y Medio Ambiente, Gobierno de España, Madrid.Search in Google Scholar

Thurstan, R.H., Brockington, S., and Roberts, C.M. (2010). The effects of 118 years of industrial fishing on UK bottom trawl fisheries. Nat. Commun. 1: 15, https://doi.org/10.1038/ncomms1013.Search in Google Scholar PubMed

Tortonese, E. (1959). Osservazioni sul bentos del Mar di Marmara e del Bosforo. Rivista Sci. Nat. 50: 18–26.Search in Google Scholar

Vives, F. and López-Jurado, J.L. (1988). Les copépodes des îles Balears en rapport avec les masses d’eau. Rapp. Comm. Int. Mer Médit. 31: 234.Search in Google Scholar

Wilson, S., Blake, C., Berges, J.A., and Maggs, C.A. (2004). Environmental tolerances of free-living coralline algae (maerl): implications for European marine conservation. Biol. Conserv. 120: 279–289, https://doi.org/10.1016/j.biocon.2004.03.001.Search in Google Scholar

Žuljević, A., Peters, A.F., Nikolić, V., Antolić, B., Despalatović, M., Cvitković, I., Isajlović, H., Matijević, S., Shewring, D.M., Canese, S., et al.. (2016). The Mediterranean deep-water kelp Laminaria rodriguezii is an endangered species in the Adriatic Sea. Mar. Biol. 163: 69, https://doi.org/10.1007/s00227-016-2821-2.Search in Google Scholar PubMed PubMed Central


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/bot-2022-0043).


Received: 2022-07-18
Revised: 2022-11-03
Accepted: 2022-12-02
Published Online: 2022-12-19
Published in Print: 2023-02-23

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.5.2024 from https://www.degruyter.com/document/doi/10.1515/bot-2022-0043/html
Scroll to top button