Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) March 10, 2023

Simplified MIMO design of observer-based PI control in view of input saturation

Vereinfachter Mehrgrössenentwurf beobachterbasierter PI-Regler bei Stellbegrenzung
  • Peter Hippe

    Peter Hippe worked as Akademischer Direktor at Lehrstuhl für Regelungstechnik of the Universität Erlangen-Nürnberg till September 2006. Main fields of interest: Control systems with plant input restrictions, design of state controllers and of MIMO compensators in the frequency domain.

    EMAIL logo

Abstract

In observer-based control integral or controller windup can systematically be prevented by the observer technique, i.e., by feeding the saturated plant input signal into the observer. This prevents all windup effects caused by the dynamics of the compensator. The possibly remaining windup effects are then the same as if constant state feedback control had been applied. When using the classic approach for robust rejection of persistent disturbances the state-plus-disturbance observer is subdivided into the state observer and the controlled signal model. Thus the observer technique is only applicable when taking additional measures or when resorting to a recently published dual design method. Here, a very simple design for MIMO PI compensators is suggested which directly yields the basis for the observer technique.

Zusammenfassung

Bei beobachterbasierten Reglern liefert die Beobachtertechnik, nämlich eine Rückführung des begrenzten Stellsignals in den Beobachter, eine systematische Vermeidung des von Stellbegrenzungen ausgelösten Regler oder Integral-Windup. Sie beseitigt alle unerwünschten Auswirkungen der Regler-Dynamik auf das nichtlineare Verhalten des Kreises. Die danach noch auftretenden Windup-Effekte sind dieselben, als wenn lediglich eine Rückführung gemessener Zustandsgrössen vorläge. Beim klassischen Ansatz zur robusten Unterdrückung konstanter Störungen ist der Zustands-plus-Störbeobachter aufgeteilt in den Zustandsbeobachter und das geregelte Störmodell. Deshalb ist eine Anwendung der Beobachtertechnik nur möglich, wenn man zusätzliche Massnahmen ergreift oder einen neulich publizierten dualen Ansatz verwendet. Hier wird ein sehr einfaches Vorgehen zum Entwurf von Mehrgrössen PI-Reglern vorgestellt, das die Basis für die Beobachtertechnik direkt liefert.


Corresponding author: Peter Hippe, Universität Erlangen-Nürnberg, Erlangen, Germany, E-mail:

About the author

Peter Hippe

Peter Hippe worked as Akademischer Direktor at Lehrstuhl für Regelungstechnik of the Universität Erlangen-Nürnberg till September 2006. Main fields of interest: Control systems with plant input restrictions, design of state controllers and of MIMO compensators in the frequency domain.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] D. S. Bernstein and A. N. Michel, “A chronological bibliography on saturating actuators,” Int. J. Robust Nonlinear Control, vol. 5, pp. 375–380, 1995. https://doi.org/10.1002/rnc.4590050502.Search in Google Scholar

[2] S. Galeani, S. Tarbouriech, M. C. Turner, and L. Zaccarian, “A tutorial on modern anti-windup design,” Eur. J. Control, vol. 15, pp. 418–440, 2009. https://doi.org/10.3166/ejc.15.418-440.Search in Google Scholar

[3] C. Gökçek, P. T. Kabamba, and S. M. Meerkov, “An LQR/LQG theory for systems with saturating actuators,” IEEE Trans. Autom. Control, vol. 46, pp. 1529–1542, 2001. https://doi.org/10.1109/9.956049.Search in Google Scholar

[4] P. Hippe, Windup in Control – its Effects and Their Prevention, Berlin Heidelberg New York London, Springer, 2006.Search in Google Scholar

[5] A. Saberi, Z. Lin, and A. R. Teel, “Control of linear systems with saturating actuators,” IEEE Trans. Autom. Control, vol. 41, pp. 368–378, 1996. https://doi.org/10.1109/9.486638.Search in Google Scholar

[6] S. Tarbouriech, G. Garcia, and A. H. Glattfelder, Advanced Strategies in Control Systems with Input and Output Constraints, Vol. 336 of Lecture Notes in Control and Information Sciences, Berlin Heidelberg New York London, Springer, 2007.10.1007/978-3-540-37010-9Search in Google Scholar

[7] M. C. Turner, G. Herrmann, and I. Postlethwaite, Anti-windup Compensation and the Control of Input-Constrained Systems, Vol. 267 of Mathematical Methods for Robust and Nonlinear Control, Berlin Heidelberg New York London, Springer, pp. 143–173, 2007.10.1007/978-1-84800-025-4_5Search in Google Scholar

[8] S. Tarbouriech, G. Garcia, J. M. Gomes da SilvaJr., and I. Queinnec, Piecewise Linear Control Systems: A Computational Approach, Berlin Heidelberg New York London, Springer, 2011.Search in Google Scholar

[9] J. R. Teel and N. Kapoor, “The L2 anti-windup problem: its definition and solution,” in Proceedings of the Fourth European Control Conference, Brussels, Belgium, 1997.Search in Google Scholar

[10] M. C. Turner and L. Zaccarian, “Preface,” International Journal of Systems Science, vol. 37, p. 65, 2006, https://doi.org/10.1080/00207720612331392435.Search in Google Scholar

[11] L. Zaccarian and A. R. Teel, Modern Anti-windup Synthesis: Control Augmentation for Actuator Saturation, Princeton and Oxford, Princeton University Press, 2011.10.23943/princeton/9780691147321.001.0001Search in Google Scholar

[12] S. Rönnbäck, K. S. Walgama, and J. Sternby, “An extension to the generalized anti-windup compensator,” in Proceedings of the 13th IMACS World Congress on Scientific Computation, Dublin, Ireland, 1991.Search in Google Scholar

[13] E. J. Davison, “The robust control of a servomechanism problem for linear time-invariant multivariable systems,” IEEE Trans. Autom. Control, vol. 21, pp. 25–34, 1976. https://doi.org/10.1109/tac.1976.1101137.Search in Google Scholar

[14] E. J. Davison and A. Goldenberg, “Robust control of a general servomechanism problem: the servo-compensator,” Automatica, vol. 11, pp. 461–471, 1975. https://doi.org/10.1016/0005-1098(75)90022-9.Search in Google Scholar

[15] P. Hippe and J. Deutscher, Design of Observer-Based Compensators – From the Time to the Frequency Domain, Berlin Heidelberg New York London, Springer, 2009.10.1007/978-1-84882-537-6Search in Google Scholar

[16] J. Deutscher and G. Roppenecker, “Robust asymptotic disturbance rejection using observer-based disturbance feedforward (in German),” Automatisierungstechnik, vol. 62, pp. 547–561, 2014. https://doi.org/10.1515/auto-2014-1104.Search in Google Scholar

[17] D. G. Luenberger, “Observers for multivariable systems,” IEEE Trans. Autom. Control, vol. 11, pp. 190–197, 1966. https://doi.org/10.1109/tac.1966.1098323.Search in Google Scholar

[18] PolyX, Ltd, The Polynomial Toolbox for MATLAB®; 1998, Available at: http://www.polyx.com/.Search in Google Scholar

Received: 2022-05-06
Accepted: 2022-10-12
Published Online: 2023-03-10
Published in Print: 2023-03-28

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.1515/auto-2022-0065/html
Scroll to top button