Skip to content
BY-NC-ND 4.0 license Open Access Published by De Gruyter Open Access October 16, 2019

A GH13 glycoside phosphorylase with unknown substrate specificity from Corallococcus coralloides

  • Jorick Franceus and Tom Desmet EMAIL logo
From the journal Amylase

Abstract

Glycoside phosphorylases in subfamily GH13_18 of the carbohydrate-active enzyme database CAZy catalyse the reversible phosphorolysis of α-glycosidic bonds. They contribute to a more energy-efficient metabolism in vivo, and can be applied for the synthesis of valuable glucosides, sugars or sugar phosphates in vitro. Continuing our efforts to uncover new phosphorylase specificities, we identified an enzyme from the myxobacterium Corallococcus coralloides DSM 2259 that does not feature the signature sequence patterns of previously characterised phosphorylases. The enzyme was recombinantly expressed and subjected to substrate screening. Although it was confirmed that the Corallococcus phosphorylase does not have the same substrate specificity as other phoshorylases from subfamily GH13_18, its true natural substrate remains a mystery for now. Myxobacteria have been widely investigated as producers of numerous bioactive secondary metabolites for decades, but little research has been conducted on myxobacterial proteins. The present study exemplifies the untapped metabolic activities and functional diversity that these fascinating organisms may have left to show.

References

[1] Lombard V., Golaconda Ramulu H., Drula E., Coutinho P.M., Henrissat B., The carbohydrate-active enzymes database (CAZy) in 2013, Nucleic Acids Res., 2014, 42, D490–D495. https://doi.org/10.1093/nar/gkt117810.1093/nar/gkt1178Search in Google Scholar

[2] Stam M.R., Danchin E.G., Rancurel C., Coutinho P.M., Henrissat B., Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of α-amylase-related proteins, Protein Eng. Des. Sel., 2006, 19, 555–562. https://doi.org/10.1093/protein/gzl04410.1093/protein/gzl044Search in Google Scholar

[3] Puchart V., Glycoside phosphorylases: structure, catalytic properties and biotechnological potential, Biotechnol. Adv., 2015, 33, 261–276. https://doi.org/10.1016/j.biotechadv.2015.02.00210.1016/j.biotechadv.2015.02.002Search in Google Scholar

[4] Kitaoka M., Diversity of phosphorylases in glycoside hydrolase families, Appl. Microbiol. Biotechnol., 2015, 99, 8377–8390. https://doi.org/10.1007/s00253-015-6927-010.1007/s00253-015-6927-0Search in Google Scholar

[5] Desmet T., Soetaert W., Enzymatic glycosyl transfer: mechanisms and applications, Biocatal. Biotransform., 2011, 29, 1–18. https://doi.org/10.3109/10242422.2010.54855710.3109/10242422.2010.548557Search in Google Scholar

[6] Kagan B.O., Latker S.N., Phosphorolysis of saccharose by cultures of Leuconostoc mesenteroides, Biokhimiya, 1942, 7, 93–108.Search in Google Scholar

[7] Doudoroff M., Studies on the phosphorolysis of sucrose, J. Biol. Chem., 1943, 151, 351–361.10.1016/S0021-9258(18)44907-1Search in Google Scholar

[8] Verhaeghe T., Aerts D., Diricks M., Soetaert W., Desmet T., The quest for a thermostable sucrose phosphorylase reveals sucrose 6’-phosphate phosphorylase as a novel specificity, Appl. Microbiol. Biotechnol., 2014, 98, 7027–7037. https://doi.org/10.1007/s00253-014-5621-y10.1007/s00253-014-5621-ySearch in Google Scholar PubMed

[9] Franceus J., Pinel D., Desmet T., Glucosylglycerate phosphorylase, an enzyme with novel specificity involved in compatible solute metabolism, Appl. Environ. Microbiol., 2017, 83, e01434-17. https://doi.org/10.1128/AEM.01434-1710.1128/AEM.01434-17Search in Google Scholar PubMed PubMed Central

[10] Franceus J., Decuyper L., D’hooghe M., Desmet T., Exploring the sequence diversity in glycoside hydrolase family 13_18 reveals a novel glucosylglycerol phosphorylase, Appl. Microbiol. Biotechnol., 2018, 102, 3183–3191. https://doi.org/10.1007/s00253-018-8856-110.1007/s00253-018-8856-1Search in Google Scholar PubMed

[11] Tauzin A.S., Bruel L., Laville E., Nicoletti C., Navarro D., Henrissat B., Perrier J., et al., Sucrose 6F-phosphate phosphorylase: a novel insight in the human gut microbiome, Microb. Genomics, 2019, 5, e000253. https://doi.org/10.1099/mgen.0.00025310.1099/mgen.0.000253Search in Google Scholar PubMed PubMed Central

[12] Franceus J., Capra N., Desmet T., Thunnissen A.M.W.H., Structural comparison of a promiscuous and a highly specific sucrose 6F-phosphate phosphorylase, Int. J. Mol. Sci., 2019, 20, 3906. https://doi.org/10.3390/ijms2016390610.3390/ijms20163906Search in Google Scholar PubMed PubMed Central

[13] Goedl C., Sawangwan T., Mueller M., Schwarz A., Nidetzky B., A high-yielding biocatalytic process for the production of 2-O-(α-D-glucopyranosyl)-sn-glycerol, a natural osmolyte and useful moisturizing ingredient, Angew. Chem. Int. Ed. Engl., 2008, 47, 10086–10089. https://doi.org/10.1002/anie.20080356210.1002/anie.200803562Search in Google Scholar PubMed

[14] Sawangwan T., Goedl C., Nidetzky B., Single-step enzymatic synthesis of (R)-2-O-α-D-glucopyranosyl glycerate, a compatible solute from micro-organisms that functions as a protein stabiliser, Org. Biomol. Chem., 2009, 7, 4267–4270. https://doi.org/10.1039/b912621j10.1039/b912621jSearch in Google Scholar PubMed

[15] Kitao S., Yoshida S., Horiuchi T., Sekine H., Kusakabe I., Formation of kojibiose and nigerose by sucrose phosphorylase, Biosci. Biotechnol. Biochem., 1994, 58, 790–791. https://doi.org/10.1271/bbb.58.79010.1271/bbb.58.790Search in Google Scholar

[16] Verhaeghe T., De Winter K., Berland M., De Vreese R., D’hooghe M., Offmann B., Desmet T., Converting bulk sugars into prebiotics: semi-rational design of a transglucosylase with controlled selectivity, Chem. Commun., 2016, 52, 3687–3689. https://doi.org/10.1039/c5cc09940d10.1039/C5CC09940DSearch in Google Scholar PubMed

[17] Kraus M., Gorl J., Timm M., Seibel J., Synthesis of the rare disaccharide nigerose by structure-based design of a phosphorylase mutant with altered regioselectivity, Chem. Commun., 2016, 52, 4625–4627. https://doi.org/10.1039/c6cc00934d10.1039/C6CC00934DSearch in Google Scholar

[18] Franceus J., Dhaene S., Decadt H., Vandepitte J., Caroen J., Van der Eycken J., Beerens K., et al., Rational design of an improved transglucosylase for production of the rare sugar nigerose, Chem. Commun., 2019, 55, 4531–4533. https://doi.org/10.1039/c9cc01587f10.1039/C9CC01587FSearch in Google Scholar PubMed

[19] De Winter K., Dewitte G., Dirks-Hofmeister M.E., De Laet S., Pelantová H., Křen V., Desmet T., Enzymatic glycosylation of phenolic antioxidants: phosphorylase-mediated synthesis and characterization, J. Agric. Food Chem., 2015, 63, 10131–10139. https://doi.org/10.1021/acs.jafc.5b0438010.1021/acs.jafc.5b04380Search in Google Scholar PubMed

[20] Schwarz A., Goedl C., Minani A., Nidetzky B., Trehalose phosphorylase from Pleurotus ostreatus: characterization and stabilization by covalent modification, and application for the synthesis of α,α-trehalose, J. Biotechnol., 2007, 129, 140–150. https://doi.org/10.1016/j.jbiotec.2006.11.02210.1016/j.jbiotec.2006.11.022Search in Google Scholar PubMed

[21] De Winter K., Cerdobbel A., Soetaert W., Desmet T., Operational stability of immobilized sucrose phosphorylase: continuous production of α-glucose-1-phosphate at elevated temperatures, Process Biochem., 2011, 46, 1074–1078. https://doi.org/10.1016/j.procbio.2011.08.00210.1016/j.procbio.2011.08.002Search in Google Scholar

[22] Sievers F., Wilm A., Dineen D., Gibson T.J., Karplus K., Li W., Lopez R., et al., Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega, Mol. Syst. Biol., 2011, 7, 539. https://doi.org/10.1038/msb.2011.7510.1038/msb.2011.75Search in Google Scholar

[23] Guindon S., Dufayard J.-F., Lefort V., Anisimova M., Hordijk W., Gascuel O., New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0., Syst. Biol., 2010, 59, 307–321. https://doi.org/10.1093/sysbio/syq01010.1093/sysbio/syq010Search in Google Scholar

[24] Letunic I., Bork P., Interactive Tree Of Life (iTOL) v4: recent updates and new developments, Nucleic Acids Res., 2019, 47: W256–W259. https://doi.org/10.1093/nar/gkz23910.1093/nar/gkz239Search in Google Scholar

[25] Crooks G., Hon G., Chandonia J., Brenner S., WebLogo: a sequence logo generator, Genome Res., 2004, 14, 1188–1190. https://doi.org/10.1101/gr.84900410.1101/gr.849004Search in Google Scholar

[26] Robert X., Gouet P., Deciphering key features in protein structures with the new ENDscript server, Nucleic Acids Res., 2014, 42, W320–W324. https://doi.org/10.1093/nar/gku31610.1093/nar/gku316Search in Google Scholar

[27] Almagro Armenteros J.J., Tsirigos K.D., Sønderby C.K., Petersen T.N., Winther O., Brunak S., von Heijne G., et al., SignalP 5.0 improves signal peptide predictions using deep neural networks, Nat. Biotechnol., 2019, 37, 420–423. https://doi.org/10.1038/s41587-019-0036-z10.1038/s41587-019-0036-zSearch in Google Scholar

[28] Ceroni A., Passerini A., Vullo A., Frasconi P., DISULFIND: A disulfide bonding state and cysteine connectivity prediction server, Nucleic Acids Res., 2006, 34, W177–W181. https://doi.org/10.1093/nar/gkl26610.1093/nar/gkl266Search in Google Scholar

[29] Niesen F.H., Berglund H., Vedadi M., The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability, Nat. Protoc., 2007, 2, 2212–2221. https://doi.org/10.1038/nprot.2007.32110.1038/nprot.2007.321Search in Google Scholar

[30] Gawronski J.D., Benson D.R., Microtiter assay for glutamine synthetase biosynthetic activity using inorganic phosphate detection, Anal. Biochem., 2004, 327, 114–118. https://doi.org/10.1016/j.ab.2003.12.02410.1016/j.ab.2003.12.024Search in Google Scholar

[31] Silverstein R., Voet J., Reed D., Abeles R., Purification and mechanism of action of sucrose phosphorylase, J. Biol. Chem., 1967, 242, 1338–1346.10.1016/S0021-9258(18)96185-5Search in Google Scholar

[32] Verhaeghe T., Diricks M., Aerts D., Soetaert W., Desmet T., Mapping the acceptor site of sucrose phosphorylase from Bifidobacterium adolescentis by alanine scanning, J. Mol. Catal. B Enzym., 2013, 96, 81–88. https://doi.org/10.1016/j.molcatb.2013.06.01410.1016/j.molcatb.2013.06.014Search in Google Scholar

[33] Huntley S., Zhang Y., Treuner-Lange A., Kneip S., Sensen C.W., Søgaard-Andersen L., Complete genome sequence of the fruiting myxobacterium Corallococcus coralloides DSM 2259, J. Bacteriol., 2012, 194, 3012–3013. https://doi.org/10.1128/JB.00397-1210.1128/JB.00397-12Search in Google Scholar PubMed PubMed Central

[34] Polizzi K.M., Bommarius A.S., Broering J.M., Chaparro-Riggers J.F., Stability of biocatalysts, Curr. Opin. Chem. Biol., 2007, 11, 220–225. https://doi.org/10.1016/j.cbpa.2007.01.68510.1016/j.cbpa.2007.01.685Search in Google Scholar PubMed

[35] Sprogoe D., van den Broek L.A.M., Mirza O., Kastrup J.S., Voragen A.G.J., Gajhede M., Skov L.K., Crystal structure of sucrose phosphorylase from Bifidobacterium adolescentis, Biochemistry, 2004, 43, 1156–1162. https://doi.org/10.1021/bi035639510.1021/bi0356395Search in Google Scholar PubMed

[36] Mirza O., Skov L.K., Sprogøe D., van den Broek L.A., Beldman G., Kastrup J.S., Gajhede M., Structural rearrangements of sucrose phosphorylase from Bifidobacterium adolescentis during sucrose conversion, J. Biol. Chem., 2006, 281, 35576–35584. https://doi.org/10.1074/jbc.M60561120010.1074/jbc.M605611200Search in Google Scholar PubMed

[37] Wildberger P., Luley-Goedl C., Nidetzky B., Aromatic interactions at the catalytic subsite of sucrose phosphorylase: their roles in enzymatic glucosyl transfer probed with Phe52→Ala and Phe52→Asn mutants, FEBS Lett., 2011, 585, 499–504. https://doi.org/10.1016/j.febslet.2010.12.04110.1016/j.febslet.2010.12.041Search in Google Scholar PubMed

[38] Wildberger P., Todea A., Nidetzky B., Probing enzyme-substrate interactions at the catalytic subsite of Leuconostoc mesenteroides sucrose phosphorylase with site-directed mutagenesis: the roles of Asp49 and Arg395, Biocatal. Biotransform., 2012, 30, 326–337. https://doi.org/10.3109/10242422.2012.67472010.3109/10242422.2012.674720Search in Google Scholar

[39] Mueller M., Nidetzky B., Dissecting differential binding of fructose and phosphate as leaving group/nucleophile of glucosyl transfer catalyzed by sucrose phosphorylase, FEBS Lett., 2007, 581, 3814–3818. https://doi.org/10.1016/j.febslet.2007.07.00410.1016/j.febslet.2007.07.004Search in Google Scholar PubMed

[40] Muñoz-Dorado J., Marcos-Torres F.J., García-Bravo E., Moraleda-Muñoz A., Pérez J., Myxobacteria: moving, killing, feeding, and surviving together, Front. Microbiol., 2016, 7, 781. https://doi.org/10.3389/fmicb.2016.0078110.3389/fmicb.2016.00781Search in Google Scholar PubMed PubMed Central

[41] Mohr K., Diversity of myxobacteria – we only see the tip of the iceberg, Microorganisms, 2018, 6, 84. https://doi.org/10.3390/microorganisms603008410.3390/microorganisms6030084Search in Google Scholar PubMed PubMed Central

[42] Herrmann J., Fayad A.A., Müller R., Natural products from myxobacteria: novel metabolites and bioactivities, Nat. Prod. Rep., 2017, 34, 135–160. https://doi.org/10.1039/c6np00106h10.1039/C6NP00106HSearch in Google Scholar PubMed

[43] Hoffmann T., Krug D., Bozkurt N., Duddela S., Jansen R., Garcia R., Gerth K., et al., Correlating chemical diversity with taxonomic distance for discovery of natural products in myxobacteria, Nat. Commun., 2018, 9, 803. https://doi.org/10.1038/s41467-018-03184-110.1038/s41467-018-03184-1Search in Google Scholar PubMed PubMed Central

[44] Livingstone P.G., Morphew R.M., Whitworth D.E., Genome sequencing and pan-genome analysis of 23 Corallococcus spp. strains reveal unexpected diversity, with particular plasticity of predatory gene sets, Front. Microbiol., 2018, 9, 3187. https://doi.org/10.3389/fmicb.2018.0318710.3389/fmicb.2018.03187Search in Google Scholar PubMed PubMed Central

[45] Irschik H., Reichenbach H., An unusual pattern of carbohydrate utilization in Corallococcus (Myxococcus) coralloides (Myxobacterales), Arch. Microbiol., 1985, 142, 40–44. https://doi.org/10.1007/BF0040923410.1007/BF00409234Search in Google Scholar

[46] Li Z., Wu J., Zhang B., Wang F., Ye X., Huang Y., Cui Z., Amy M, a novel maltohexaose-forming α-amylase from Corallococcus sp. strain EGB, Appl. Environ. Microbiol., 2015, 81, 1977–1987. https://doi.org/10.1128/AEM.03934-1410.1128/AEM.03934-14Search in Google Scholar PubMed PubMed Central

[47] Wu J., Xia B., Li Z., Ye X., Chen Q., Dong W., Zhou J., et al., Molecular cloning and characterization of a novel GH13 saccharifying α-amylase AmyC from Corallococcus sp. EGB, Starch/Stärke, 2015, 67, 810–819. https://doi.org/10.1002/star.20140025810.1002/star.201400258Search in Google Scholar

[48] Li Z., Ji K., Zhou J., Ye X., Wang T., Luo X., Huang Y., et al., A debranching enzyme IsoM of Corallococcus sp. strain EGB with potential in starch processing, Int. J. Biol. Macromol., 2017, 105, 1300–1309. https://doi.org/10.1016/j.ijbiomac.2017.07.15310.1016/j.ijbiomac.2017.07.153Search in Google Scholar PubMed

[49] Zhou J., Li Z., Wu J., Li L., Li D., Ye X., Luo X., et al., Functional analysis of a novel β-(1,3)-glucanase from Corallococcus sp. strain egb containing a fascin-like module, Appl. Environ. Microbiol., 2017, 83, e01016-17. https://doi.org/10.1128/AEM.01016-110.1128/AEM.01016-17Search in Google Scholar

[50] Zhou J., Li Z., Zhang H., Wu J., Ye X., Dong W., Jiang M., et al., Novel maltogenic amylase coma from Corallococcus sp. strain EGB catalyzes the conversion of maltooligosaccharides and soluble starch to maltose, Appl. Environ. Microbiol., 2018, 84, e00152-18. https://doi.org/10.1128/AEM.00152-1810.1128/AEM.00152-18Search in Google Scholar PubMed PubMed Central

[51] Li Z., Xia C., Wang Y., Li X., Qiao Y., Li C., Zhou J., et al., Identification of an endo-chitinase from Corallococcus sp. EGB and evaluation of its antifungal properties, Int. J. Biol. Macromol., 2019, 132, 1235–1243. https://doi.org/10.1016/j.ijbiomac.2019.04.05610.1016/j.ijbiomac.2019.04.056Search in Google Scholar PubMed

[52] Ferreira C., Soares A.R., Lamosa P., Santos M.A., da Costa M.S., Comparison of the compatible solute pool of two slightly halophilic planctomycetes species, Gimesia maris and Rubinisphaera brasiliensis, Extremophiles, 2016, 20, 811–820. https://doi.org/10.1007/s00792-016-0868-010.1007/s00792-016-0868-0Search in Google Scholar PubMed

[53] Oslancova A., Janecek S., Oligo-1,6-glucosidase and neopullulanase enzyme subfamilies from the α-amylase family defined by the fifth conserved sequence region, Cell. Mol. Life Sci., 2002, 59, 1945–1959. https://doi.org/10.1007/PL0001251710.1007/PL00012517Search in Google Scholar

[54] Majzlova K., Pukajova Z., Janecek, S., Tracing the evolution of the α-amylase subfamily GH13_36 covering the amylolytic enzymes intermediate between oligo-1,6-glucosidases and neopullulanases, Carbohydr. Res., 2013, 367, 48–57. https://doi.org/10.1016/j.carres.2012.11.02210.1016/j.carres.2012.11.022Search in Google Scholar PubMed

Received: 2019-06-27
Accepted: 2019-08-06
Published Online: 2019-10-16

© 2019 Jorick Franceus et al., published by De Gruyter Open

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/amylase-2019-0003/html
Scroll to top button