Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 16, 2016

Sorption/desorption hysteresis revisited. Sorption properties of Pinus pinea L. analysed by the parallel exponential kinetics and Kelvin-Voigt models

  • Cristina Simón EMAIL logo , Luis García Esteban , Paloma de Palacios , Francisco García Fernández and Alberto García-Iruela
From the journal Holzforschung

Abstract

The hygroscopic properties of Pinus pinea L. wood at 35 and 50°C were investigated by the dynamic vapour sorption (DVS) technique. The sorption kinetic behaviour was studied through the parallel exponential kinetics (PEK) model, which is subdivided into a fast and a slow process. The parameters obtained by PEK were interpreted based on the Kelvin-Voigt (KV) model to determine elasticity and viscosity values of the wood cell wall. The PEK data perfectly fit the experimental data. The temperature-dependent transition between the fast and slow processes is fluent. The slow process contributes more to the total hysteresis of sorption. The kinetic properties varied in relation to the type of cycle and the temperature. The moduli of elasticity and viscosity were higher in the slow process than in the fast one. In both processes, the moduli showed a decreasing tendency in relation to relative humidity.

References

Al-Muhtaseb, A.H., McMinn, W.A.M., Magee, T.R.A. (2004) Water sorption isotherms of starch powders – Part 1: mathematical description of experimental data. J. Food Eng. 61:297–307.10.1016/S0260-8774(03)00133-XSearch in Google Scholar

Altgen, M., Militz, H. (2016) Influence of process conditions on hygroscopicity and mechanical properties of European beech thermally modified in a high-pressure reactor system. Holzforschung 70:971–979.10.1515/hf-2015-0235Search in Google Scholar

Avramidis, S. (1997) The basics of sorption. In: International Conference on Wood-Water Relations. 16–17 June 1997. Ed. Hoffmeyer, P. Copenhagen, Denmark. pp. 1–16.Search in Google Scholar

Engelund, E.T., Klamer, M., Venas, T.M. (2010) Acquisition of sorption isotherms for modified woods by the use of dynamic vapour sorption instrumentation. Principles and Practice. IRG/WP 10-40518.Search in Google Scholar

Engelund, E.T., Thygesen, L.G., Svensson, S., Hill, C.A.S. (2013) A critical discussion of the physics of wood-water interactions. Wood Sci. Technol. 47:141–161.10.1007/s00226-012-0514-7Search in Google Scholar

Esteban, L.G., Fernandez, F.G., Casasus, A.G., de Palacios, P.D., Gril, J. (2006) Comparison of the hygroscopic behaviour of 205-year-old and recently cut juvenile wood from Pinus sylvestris L. Ann. For. Sci. 63:309–317.10.1051/forest:2006010Search in Google Scholar

Esteban, L.G., de Palacios, P., Fernandez, F.G., Guindeo, A., Cano, N.N. (2008) Sorption and thermodynamic properties of old and new Pinus sylvestris wood. Wood Fiber Sci. 40:111–121.Search in Google Scholar

Esteban, L.G., de Palacios, P., Garcia Fernandez, F., Martin, J.A., Genova, M., Fernandez-Golfin, J.I. (2009) Sorption and thermodynamic properties of buried juvenile Pinus sylvestris L. wood aged 1,170±40 BP. Wood Sci. Technol. 43:140–151.10.1007/s00226-009-0261-6Search in Google Scholar

Esteban, L.G., de Palacios, P., Fernandez, F.G., Garcia-Amorena, I. (2010) Effects of burial of Quercus spp. wood aged 5910±250 BP on sorption and thermodynamic properties. Int. Biodeter. Biodegr. 64:371–377.10.1016/j.ibiod.2010.01.010Search in Google Scholar

Esteban, L.G., Simon, C., Fernandez, F.G., de Palacios, P., Martín-Sampedro, R., Eugenio, M.E., Hosseinpourpia, R. (2015) Juvenile and mature wood of Abies pinsapo Boissier: sorption and thermodynamic properties. Wood Sci. Technol. 49:725–738.10.1007/s00226-015-0730-zSearch in Google Scholar

Fernandez, F.G., Esteban, L.G., de Palacios, P., Simon, C., Garcia-Iruela, A., de la Fuente, J. (2014) Sorption and thermodynamic properties of Terminalia superba Engl. & Diels. and Triplochiton scleroxylon K. Schum. through the 15, 35 and 50oC sorption isotherms. Eur. J. Wood Prod. 72:99–106.10.1007/s00107-013-0752-xSearch in Google Scholar

Forest Products Laboratory. Wood Handbook – Wood as an Engineering Material. Technical Report FPL-GTR-190. US Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, 2010.Search in Google Scholar

Hill, C.A.S., Norton, A., Newman, G. (2009) The water vapor sorption behavior of natural fibers. J. Appl. Polym. Sci. 112: 1524–1537.10.1002/app.29725Search in Google Scholar

Hill, C.A.S., Norton, A.J., Newman, G. (2010a) The water vapour sorption properties of Sitka spruce determined using a dynamic vapour sorption apparatus. Wood Sci. Technol. 44:497–514.10.1007/s00226-010-0305-ySearch in Google Scholar

Hill, C.A.S., Norton, A., Newman, G. (2010b) Analysis of the water vapour sorption behaviour of Sitka spruce (Picea sitchensis (Bongard) Carr.) based on the parallel exponential kinetics model. Holzforschung 64:469–473.10.1515/hf.2010.059Search in Google Scholar

Hill, C.A.S., Norton, A., Newman, G. (2010c) The water vapor sorption behavior of flax fibers-analysis using the Parallel Exponential Kinetics Model and determination of the activation energies of sorption. J. Appl. Polym. Sci. 116:2166–2173.10.1002/app.31819Search in Google Scholar

Hill, C., Moore, J., Jalaludin, Z., Leveneu, M., Mahrdt, E. (2011) Influence of earlywood/latewood and ring position upon water vapour sorption properties of Sitka spruce. Int. Wood Prod. J. 2:12–19.10.1179/2042645311Y.0000000001Search in Google Scholar

Hill, C.A.S., Xie, Y. (2011) The dynamic water vapour sorption properties of natural fibres and viscoelastic behaviour of the cell wall: is there a link between sorption kinetics and hysteresis? J. Mater. Sci. 46:3738–3748.10.1007/s10853-011-5286-1Search in Google Scholar

Hill, C.A.S., Ramsay, J., Keating, B., Laine, K., Rautkari, L., Hughes, M., Constant, B. (2012a) The water vapour sorption properties of thermally modified and densified wood. J. Mater. Sci. 47:3191–3197.10.1007/s10853-011-6154-8Search in Google Scholar

Hill, C.A.S., Keating, B.A., Jalaludin, Z., Mahrdt, E. (2012b) A rheological description of the water vapour sorption kinetics behaviour of wood invoking a model using a canonical assembly of Kelvin-Voigt elements and a possible link with sorption hysteresis. Holzforschung 66:35–47.10.1515/HF.2011.115Search in Google Scholar

Himmel, S., Mai, C. (2015) Effects of acetylation and formalization on the dynamic water vapor sorption behavior of wood. Holzforschung 69:633–643.10.1515/hf-2014-0161Search in Google Scholar

Himmel, S., Mai, C. (2016) Water vapour sorption of wood modified by acetylation and formalisation – analysed by a sorption kinetics model and thermodynamic considerations. Holzforschung, 70:203–213.10.1515/hf-2015-0015Search in Google Scholar

Hoffmeyer, P., Engelund, E.T., Thygesen, L.G. (2011) Equilibrium moisture content (EMC) in Norway spruce during the first and second desorptions. Holzforschung 65:875–882.10.1515/HF.2011.112Search in Google Scholar

Hozjan, T., Svensson, S. (2011) Theoretical analysis of moisture transport in wood as an open porous hygroscopic material. Holzforschung 65:97–102.10.1515/hf.2010.122Search in Google Scholar

Jalaludin, Z., Hill, C.A.S., Samsi, H.W., Husain, H., Xie, Y. (2010) Analysis of water vapour sorption of oleo-thermal modified wood of Acacia mangium and Endospermum malaccense by a parallel exponential kinetics model and according to the Hailwood-Horrobin model. Holzforschung 64:763–770.10.1515/hf.2010.100Search in Google Scholar

Keating, B.A., Hill, C.A.S., Sun, D., English, R., Davies, P., McCue, C. (2013) The water vapor sorption behavior of a galactomannan cellulose nanocomposite film analyzed using parallel exponential kinetics and the Kelvin-Voigt viscoelastic model. J. Appl. Polym. Sci. 129:2352–2359.10.1002/app.39132Search in Google Scholar

Kohler, R., Duck, R., Ausperger, B., Alex, R. (2003) A numeric model for the kinetics of water vapor sorption on cellulosic reinforcement fibers. Compos. Interfaces 10:255–276.10.1163/156855403765826900Search in Google Scholar

Kohler, R., Alex, R., Brielmann, R., Ausperger, B. (2006) A new kinetic model for water sorption isotherms of cellulosic materials. Macromol. Symp. 244:89–96.10.1002/masy.200651208Search in Google Scholar

Krabbenhoft, K., Damkilde, L. (2004) A model for non-Fickian moisture transfer in wood. Mater. Struct. 37:615–622.10.1007/BF02483291Search in Google Scholar

Lu, Y.F., Pignatello, J.J. (2002) Demonstration of the “Conditioning effect” in soil organic matter in support of a pore deformation mechanism for sorption hysteresis. Environ. Sci. Technol. 36:4553–4561.10.1021/es020554xSearch in Google Scholar

Lu, Y.F., Pignatello, J.J. (2004) History-dependent sorption in humic acids and a lignite in the context of a polymer model for natural organic matter. Environ. Sci. Technol. 38:5853–5862.10.1021/es049774wSearch in Google Scholar

McMinn, W.A.M., Magee, T.R.A. (2003) Thermodynamic properties of moisture sorption of potato. J. Food Eng. 60:157–165.10.1016/S0260-8774(03)00036-0Search in Google Scholar

Neimsuwan, T., Wang, S., Taylor, A.M., Rials, T.G. (2008) Statics and kinetics of water vapor sorption of small loblolly pine samples. Wood Sci. Technol. 42:493–506.10.1007/s00226-007-0165-2Search in Google Scholar

Okubayashi, S., Griesser, U.J., Bechtold, T. (2004) A kinetic study of moisture sorption and desorption on lyocell fibers. Carbohydr. Polym. 58:293–299.10.1016/j.carbpol.2004.07.004Search in Google Scholar

Olek, W., Majka, J., Czajkowski, Ł. (2013) Sorption isotherms of thermally modified wood. Holzforschung, 67:183–191.10.1515/hf-2011-0260Search in Google Scholar

Pearson, H., Gabbitas, B., Ormarsson, S. (2013) Equilibrium moisture content of radiata pine at elevated temperature and pressure reveals measurement challenges. J. Mater. Sci. 48:332–341.10.1007/s10853-012-6750-2Search in Google Scholar

Popescu, C.M., Hill, C.A.S. (2013) The water vapour adsorption-desorption behaviour of naturally aged Tilia cordata Mill. wood. Polym. Degrad. Stab. 98:1804–1813.10.1016/j.polymdegradstab.2013.05.021Search in Google Scholar

Popescu, C.M., Hill, C.A.S., Curling, S., Ormondroyd, G., Xie, Y.J. (2014) The water vapour sorption behaviour of acetylated birch wood: how acetylation affects the sorption isotherm and accessible hydroxyl content. J. Mater. Sci. 49:2362–2371.10.1007/s10853-013-7937-xSearch in Google Scholar

Rautkari, L., Hill, C.A.S. (2014) Effect of initial moisture content on the anti-swelling efficiency of thermally modified Scots pine sapwood treated in a high-pressure reactor under saturated steam. Holzforschung 68:323–326.10.1515/hf-2013-0078Search in Google Scholar

Rautkari, L., Honkanen, J., Hill, C.A.S., Ridley-Ellis, D., Hughes, M. (2014) Mechanical and physical properties of thermally modified Scots pine wood in high pressure reactor under saturated steam at 120, 150 and 180oC. Eur. J. Wood Prod. 72:33–41.10.1007/s00107-013-0749-5Search in Google Scholar

Salin, J.G. (2010) Problems and solutions in wood drying modelling: history and future. Wood Mater. Sci. Eng. (Norway) 5:123–134.10.1080/17480272.2010.498056Search in Google Scholar

Sharratt, V., Hill, C.A.S., Zaihan, J., Kint, D.P.R. (2011) The influence of photodegradation and weathering on the water vapour sorption kinetic behaviour of scots pine earlywood and latewood. Polym. Degrad. Stab. 96:1210–1218.10.1016/j.polymdegradstab.2011.04.016Search in Google Scholar

Siau, J.F. Wood: Influence of Moisture on Physical Properties. Department of Wood Science and Forest Products, Virginia Polytechnic Institute and State University, Blackburg, VA, 1995.Search in Google Scholar

Simon, C., Esteban, L.G., de Palacios, P., Fernandez, F.G., Martín-Sampedro, R., Eugenio, M.E. (2015) Thermodynamic analysis of water vapour sorption behaviour of juvenile and mature wood of Abies alba Mill. J. Mater. Sci. 50:7282–7292.10.1007/s10853-015-9283-7Search in Google Scholar

Soltani, M., Najafi, A., Yousefian, S., Naji, H.R., Bakar, E.S. (2013) Water repellent effect and dimension stability of Beech wood impregnated with nano-zinc oxide. BioResources 8:6280–6287.10.15376/biores.8.4.6280-6287Search in Google Scholar

Song, K.L., Yin, Y.F., Salmen, L., Xiao, F.M., Jiang, X.M. (2014) Changes in the properties of wood cell walls during the transformation from sapwood to heartwood. J. Mater. Sci. 49:1734–1742.10.1007/s10853-013-7860-1Search in Google Scholar

Thygesen, L.G., Tang, E.E., Hoffmeyer, P. (2010) Water sorption in wood and modified wood at high values of relative humidity. Part I: Results for untreated, acetylated, and furfurylated Norway spruce. Holzforschung, 64:315–323.10.1515/hf.2010.044Search in Google Scholar

Telkki, V.V., Yliniemi, M., Jokisaari, J. (2013) Moisture in softwoods: fiber saturation point, hydroxyl site content, and the amount of micropores as determined from NMR relaxation time distributions. Holzforschung 67:291–300.10.1515/hf-2012-0057Search in Google Scholar

Vrentas, J.S., Vrentas, C.M. (1996) Hysteresis effects for sorption in glassy polymers. Macromolecules 29:4391–4396.10.1021/ma950969lSearch in Google Scholar

Wadso, L. (1994) Unsteady-state water vapor adsorption in wood: an experimental study. Wood Fiber Sci. 26:36–50.Search in Google Scholar

Willems, W. (2015) A critical review of the multilayer sorption models and comparison with the sorption site occupancy (SSO) model for wood moisture sorption isotherm analysis. Holzforschung, 69:67–75.10.1515/hf-2014-0069Search in Google Scholar

Willems, W. (2016) Equilibrium thermodynamics of wood moisture revisited: presentation of a simplified theory. Holzforschung 70:963–970.10.1515/hf-2015-0251Search in Google Scholar

Xie, Y., Hill, C.A.S., Xiao, Z., Jalaludin, Z., Militz, H., Mai, C. (2010) Water vapor sorption kinetics of wood modified with glutaraldehyde. J. Appl. Polym. Sci. 117: 1674–1682.10.1002/app.32054Search in Google Scholar

Xie, Y., Hill, C.A.S., Xiao, Z., Mai, C., Militz, H. (2011a) Dynamic water vapour sorption properties of wood treated with glutaraldehyde. Wood Sci. Technol. 45:49–61.10.1007/s00226-010-0311-0Search in Google Scholar

Xie, Y., Hill, C.A.S., Jalaludin, Z., Sun, D. (2011b) The water vapour sorption behaviour of three celluloses: analysis using parallel exponential kinetics and interpretation using the Kelvin-Voigt viscoelastic model. Cellulose 18:517–530.10.1007/s10570-011-9512-4Search in Google Scholar

Zaihan, J., Hill, C.A.S., Curling, S., Hashim, W.S., Hamdan, H. (2010) The kinetics of water vapour sorption: Analysis using Parallel Exponential Kinetics model on six Malaysian hardwoods. J. Trop. For. Sci. 22:107–117.Search in Google Scholar

Zaihan, J., Hill, C.A.S., Hashim, W.S., Dahlan, J.M., Sun, D.Y. (2011) Analysis of the water vapour sorption isotherms of oil palm trunk and rubberwood. J. Trop. For. Sci. 23: 97–105.Search in Google Scholar

Received: 2016-6-15
Accepted: 2016-9-28
Published Online: 2016-11-16
Published in Print: 2017-2-1

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 10.6.2024 from https://www.degruyter.com/document/doi/10.1515/hf-2016-0097/html
Scroll to top button