Skip to main content
Log in

A model for non-fickian moisture transfer in wood

  • Scientific Report
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

A model for non-Fickian moisture transfer in wood is presented. The model considers the transfer of water vapour separate from the transfer of bound water. These two components are linked by an equation describing the sorption on the cell wall level. Hereby, a formulation capable of describing known non-Fickian effects, including the effects of step size, absolute moisture content, and sample length, is achieved. The sorption curves predicted by the model are compared with experimental results and good agreement is found.

Réssumé

Un modèle pour le transfert non-Fickien d'humidité dans le bois est présenté. Le modèle considère le transfert de la vapeur d'au séparé pour le transfert de l'eau liée. Ces deux composants sont liés par une équation décrivant la sorption au niveau de mur de cellules. Par ceci, une formulation capable de décrire des effets non-Fickian connus, comprenant les effets de la taille d'étape, le contenu d'humidité absolu, et la longueur d'échantillon, est réalisée. Les courbes de sorption prévues par le modèle sont comparées aux résultats expérimentaux et une bonne concordance est trouvée.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

D :

Diffusion coefficient

E :

Fractional weight increase

h :

Sorption constant (kgm−3s−1Pa−1)

j :

Flux (kgm−2s−1)

m :

Moisture content (kg/kg)

\(\dot m\) :

Sorption term (kgm−3s−1)

p :

Pressure (Pa)

r :

Relative humidity (RH)

R :

Gas constant (8.31 Jmol−1K−1)

T :

Temperature (K)

w :

Moisure content (kgm−3)

Φ:

Porosity

σ:

Density (kgm−3)

ξ:

Internal area/volume ration (m−1)

τ:

Vapour diffusivity reduction factor

a :

air

eff :

effective

g :

gas—vapour+air

L :

longitudinal

T :

tangential

v :

vapour

References

  1. Wadsö, L., ‘Unsteady-state water vapour adsorption i wood: An experimental study’,Wood and Fiber Science 6(1) (1994), 36–45.

    Google Scholar 

  2. Crank, J., ‘The Mathematics of Diffusion’ (Oxford University Press, London, 1967).

    MATH  Google Scholar 

  3. Rosen, H.-N., ‘The influence of external resistance on moisture adsorption rates in wood’,Wood and Fiber Science 10(3) (1973) 218–228.

    Google Scholar 

  4. Christensen, G.N., ‘The rate of sorption by thin materials’,Humidity and Moisture, (4) (1965) 279–293.

    Google Scholar 

  5. Wadsö, L., ‘Describing non-Fickian water-vapour sorption in wood’,Journal of Materials Science,29 (1994) 2367–2372.

    Article  Google Scholar 

  6. Christensen, G.N., ‘The rate of sorption by wood and pulp’,Appita,13 (1959) 112–123.

    Google Scholar 

  7. Christensen, G. N. and Kelsey, K.E., ‘The sorption of water vapour through the chemical componenets of wood (Die Sorption von Wasserdampf durch die chemichen Bestandteile des Holzes)’,Holz als Roh- und Werkstoff 17(5) (1959), 178–188 [in German].

    Google Scholar 

  8. Christensen, G.N. and Kelsey, K.E., ‘The rate of water vapour sorption through wood (Die Gescwhindigkeit der Wasserdampfsorption durch Holz)’,Holz als Roh- und Werkstof 17(5) (1959) 189–203 [in German].

    Google Scholar 

  9. Kelly, M. W. and Hart, C.A., ‘Water sorption rates by wood cell walls’,Wood and Fiber Science,1 (1970) 270–282.

    Google Scholar 

  10. Cunningham, M.J., ‘A model to explain “anomalous” moisture sorption in wood under step function driving forces’,Wood and Fiber Science,27(3) (1996) 265–277.

    Google Scholar 

  11. Salin, J.G., ‘Mass transfer from wooden surfaces and internal moisture non-equilibrium’,Drying Technology 14(10) (1996) 2213–2224.

    Google Scholar 

  12. Absetz, I. and Koponen, S., ‘Fundamental diffusion behaviour of wood’, In Hoffimeyer, P. (editor) ‘International Conference on Wood Water Relations’, (Copenhagen, 1997).

  13. Siau, J.F., “Transport Processes in Wood’, Springer-Verlag, Berlin, 1984).

    Google Scholar 

  14. Schirmer, R., ‘The diffusion coefficient water vapour-air mixtures and the rate of evaporation (Die Diffusionzahl von Wasserdampfluftgemischem und die Verdampfungsgeschwingkeit)’,VDI Beihaft Verfahrestechnik 6 (1938) 170 [in German].

    Google Scholar 

  15. Wadsö, L.: ‘Studies of Water-vapor Transport and Sorption in Wood’, (Report TVBM-1013, Lund University, Sweden 1993).

    Google Scholar 

  16. Choong, E.T. and Skaar, C., ‘Separating internal and external resistance to moisture removal in wood drying’,Wood Science,1(4) (1969) 200–202.

    Google Scholar 

  17. Skaar, C., ‘Prichananda, C. and Davidson, R.W., ‘Soma aspects of the dynamic moisture sorption dynamics in wood’Wood Science 2(3) (1970) 179–185.

    Google Scholar 

  18. Katz J.R., ‘The laws of swelling (Gesetze der Quellung)’,Kollidchemische Beihefte 9 (1917) 1–182 [in German].

    Google Scholar 

  19. Barkas, W.W., ‘The Swelling of Wood under Stress’, (HM Stationary Office, London, 1949).

    Google Scholar 

  20. Dinwoodie, J.M., ‘Timber, its Nature and Behaviour’, (Van Norstrand Reinhold, New York, 1981).

    Google Scholar 

  21. Skaar, C., ‘Wood-Water Relations’, (Springer-Verlag, Berlin, 1988).

    Google Scholar 

  22. Zienkiewicz, O.C. and Taylor, R.L., “The Finite element Mathod’, Butterworth-Heinemann, Oxford, 2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krabbenhoft, K., Damkilde, L. A model for non-fickian moisture transfer in wood. Mat. Struct. 37, 615–622 (2004). https://doi.org/10.1007/BF02483291

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02483291

Keywords

Navigation