skip to main content
research-article
Artifacts Available / v1.1

LION: Fast and High-Resolution Network Kernel Density Visualization

Published:03 May 2024Publication History
Skip Abstract Section

Abstract

Network Kernel Density Visualization (NKDV) has often been used in a wide range of applications, e.g., criminology, transportation science, and urban planning. However, NKDV is computationally expensive, which cannot be scalable to large-scale datasets and high resolution sizes. Although a recent work, called aggregate distance augmentation (ADA), has been developed for improving the efficiency to generate NKDV, this method is still slow and does not take the resolution size into account for optimizing the efficiency. In this paper, we develop a new solution, called LION, which can reduce the worst-case time complexity for generating high-resolution NKDV, without increasing the space complexity. Experiment results on four large-scale location datasets verify that LION can achieve 2.86x to 35.36x speedup compared with the state-of-the-art ADA method.

References

  1. 2024. ArcGIS. https://www.arcgis.com/index.html.Google ScholarGoogle Scholar
  2. 2024. Chicago Data Portal. https://data.cityofchicago.org/Transportation/Traffic-Crashes-Crashes/85ca-t3if.Google ScholarGoogle Scholar
  3. 2024. City of Detroit Open Data Portal. https://data.detroitmi.gov/datasets/detroitmi::911-calls-for-service/about.Google ScholarGoogle Scholar
  4. 2024. Gainesville's Open Data Portal. https://data.cityofgainesville.org/Public-Safety/Crime-Responses/gvua-xt9q/data.Google ScholarGoogle Scholar
  5. 2024. Road Safety Data. https://data.gov.uk/dataset/cb7ae6f0-4be6-4935-9277-47e5ce24a11f/road-safety-data.Google ScholarGoogle Scholar
  6. 2024. SANET. http://sanet.csis.u-tokyo.ac.jp/.Google ScholarGoogle Scholar
  7. 2024. Seattle Open Data. https://data.seattle.gov/Transportation/SDOT-GIS-Datasets/jyjy-n3ap.Google ScholarGoogle Scholar
  8. 2024. spNetwork (nkde: Network Kernel density estimate). https://www.rdocumentation.org/packages/spNetwork/versions/0.4.3.2/topics/nkde.Google ScholarGoogle Scholar
  9. Tenindra Abeywickrama, Muhammad Aamir Cheema, and Arijit Khan. 2020. K-SPIN: Efficiently Processing Spatial Keyword Queries on Road Networks. IEEE Trans. Knowl. Data Eng. 32, 5 (2020), 983--997. Google ScholarGoogle ScholarCross RefCross Ref
  10. Tenindra Abeywickrama, Muhammad Aamir Cheema, and David Taniar. 2016. k-Nearest Neighbors on Road Networks: A Journey in Experimentation and In-Memory Implementation. Proc. VLDB Endow. 9, 6 (2016), 492--503. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. 2013. Fast exact shortest-path distance queries on large networks by pruned landmark labeling. In SIGMOD. 349--360. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Amira K. Al-Aamri, Graeme Hornby, Li-Chun Zhang, Abdullah A. Al-Maniri, and Sabu S. Padmadas. 2021. Mapping road traffic crash hotspots using GIS-based methods: A case study of Muscat Governorate in the Sultanate of Oman. Spatial Statistics 42 (2021), 100458. Towards Spatial Data Science. Google ScholarGoogle ScholarCross RefCross Ref
  13. Adrian Baddeley, Gopalan Nair, Suman Rakshit, Greg McSwiggan, and Tilman M. Davies. 2021. Analysing point patterns on networks --- A review. Spatial Statistics 42 (2021), 100435.Google ScholarGoogle ScholarCross RefCross Ref
  14. Geoff Boeing. 2017. OSMnx: New methods for acquiring, constructing, analyzing, and visualizing complex street networks. Computers, Environment and Urban Systems 65 (2017), 126 -- 139.Google ScholarGoogle ScholarCross RefCross Ref
  15. Darren Boss, Trisalyn Nelson, and Meghan Winters. 2018. Monitoring city wide patterns of cycling safety. Accident Analysis & Prevention 111 (2018), 101--108. Google ScholarGoogle ScholarCross RefCross Ref
  16. Álvaro Briz-Redón, Francisco Martínez-Ruiz, and Francisco Montes. 2019. Spatial analysis of traffic accidents near and between road intersections in a directed linear network. Accident Analysis & Prevention 132 (2019), 105252.Google ScholarGoogle ScholarCross RefCross Ref
  17. Michal Bíl, Richard Andrášik, and Zbyněk Janoška. 2013. Identification of hazardous road locations of traffic accidents by means of kernel density estimation and cluster significance evaluation. Accident Analysis & Prevention 55 (2013), 265--273. Google ScholarGoogle ScholarCross RefCross Ref
  18. Tsz Nam Chan, Reynold Cheng, and Man Lung Yiu. 2020. QUAD: Quadratic-Bound-based Kernel Density Visualization. In SIGMOD. 35--50. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Tsz Nam Chan, Pak Lon Ip, Leong Hou U, Byron Choi, and Jianliang Xu. 2022. SAFE: A Share-and-Aggregate Bandwidth Exploration Framework for Kernel Density Visualization. Proc. VLDB Endow. 15, 3 (2022), 513--526.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Tsz Nam Chan, Pak Lon Ip, Leong Hou U, Byron Choi, and Jianliang Xu. 2022. SWS: A Complexity-Optimized Solution for Spatial-Temporal Kernel Density Visualization. Proc. VLDB Endow. 15, 4 (2022), 814--827.Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Tsz Nam Chan, Pak Lon Ip, Leong Hou U, Weng Hou Tong, Shivansh Mittal, Ye Li, and Reynold Cheng. 2021. KDV-Explorer: A Near Real-Time Kernel Density Visualization System for Spatial Analysis. Proc. VLDB Endow. 14, 12 (2021), 2655--2658.Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Tsz Nam Chan, Pak Lon Ip, Kaiyan Zhao, Leong Hou U, Byron Choi, and Jianliang Xu. 2022. LIBKDV: A Versatile Kernel Density Visualization Library for Geospatial Analytics. Proc. VLDB Endow. 15, 12 (2022), 3606--3609. https://www.vldb.org/pvldb/vol15/p3606-chan.pdfGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  23. Tsz Nam Chan, Zhe Li, Leong Hou U, Jianliang Xu, and Reynold Cheng. 2021. Fast Augmentation Algorithms for Network Kernel Density Visualization. Proc. VLDB Endow. 14, 9 (2021), 1503--1516. http://www.vldb.org/pvldb/vol14/p1503-chan.pdfGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  24. Tsz Nam Chan, Leong Hou U, Reynold Cheng, Man Lung Yiu, and Shivansh Mittal. 2022. Efficient Algorithms for Kernel Aggregation Queries. IEEE Trans. Knowl. Data Eng. 34, 6 (2022), 2726--2739. Google ScholarGoogle ScholarCross RefCross Ref
  25. Tsz Nam Chan, Leong Hou U, Byron Choi, and Jianliang Xu. 2022. SLAM: Efficient Sweep Line Algorithms for Kernel Density Visualization. In SIGMOD. ACM, 2120--2134. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Tsz Nam Chan, Leong Hou U, Byron Choi, Jianliang Xu, and Reynold Cheng. 2023. Kernel Density Visualization for Big Geospatial Data: Algorithms and Applications. In MDM. IEEE, 231--234. Google ScholarGoogle ScholarCross RefCross Ref
  27. Tsz Nam Chan, Leong Hou U, Byron Choi, Jianliang Xu, and Reynold Cheng. 2023. Large-scale Geospatial Analytics: Problems, Challenges, and Opportunities. In SIGMOD Companion. ACM, 21--29. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Tsz Nam Chan, Leong Hou U, Yun Peng, Byron Choi, and Jianliang Xu. 2022. Fast Network K-function-based Spatial Analysis. Proc. VLDB Endow. 15, 11 (2022), 2853--2866. https://www.vldb.org/pvldb/vol15/p2853-chan.pdfGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  29. Tsz Nam Chan, Man Lung Yiu, and Leong Hou U. 2019. KARL: Fast Kernel Aggregation Queries. In ICDE. 542--553. Google ScholarGoogle ScholarCross RefCross Ref
  30. Tsz Nam Chan, Rui Zang, Pak Lon Ip, Leong Hou U, and Jianliang Xu. 2023. PyNKDV: An Efficient Network Kernel Density Visualization Library for Geospatial Analytic Systems. In SIGMOD Companion. ACM, 99--102. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Tsz Nam Chan, Rui Zang, Bojian Zhu, Leong Hou U, Dingming Wu, and Jianliang Xu. 2024. LION: Fast and High-Resolution Network Kernel Density Visualization (Technical Report). https://github.com/edisonchan2013928/LION/blob/main/LION_TR.pdf.Google ScholarGoogle Scholar
  32. Muhammad Aamir Cheema, Ljiljana Brankovic, Xuemin Lin, Wenjie Zhang, and Wei Wang. 2011. Continuous Monitoring of Distance-Based Range Queries. IEEE Trans. Knowl. Data Eng. 23, 8 (2011), 1182--1199. 2010.246 Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Zhida Chen, Lisi Chen, Gao Cong, and Christian S. Jensen. 2021. Location- and keyword-based querying of geo-textual data: a survey. VLDB J. 30, 4 (2021), 603--640. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Javier Delso, Belén Martín, and Emilio Ortega. 2018. A new procedure using network analysis and kernel density estimations to evaluate the effect of urban configurations on pedestrian mobility. The case study of Vitoria -Gasteiz. Journal of Transport Geography 67 (2018), 61--72. Google ScholarGoogle ScholarCross RefCross Ref
  35. Ke Deng, Xiaofang Zhou, and Heng Tao Shen. 2007. Multi-source Skyline Query Processing in Road Networks. In ICDE. IEEE, 796--805. Google ScholarGoogle ScholarCross RefCross Ref
  36. Xiaoyi Fu, Xiaoye Miao, Jianliang Xu, and Yunjun Gao. 2017. Continuous range-based skyline queries in road networks. World Wide Web 20, 6 (2017), 1443--1467. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Yunjun Gao, Jingwen Zhao, Baihua Zheng, and Gang Chen. 2016. Efficient Collective Spatial Keyword Query Processing on Road Networks. IEEE Trans. Intell. Transp. Syst. 17, 2 (2016), 469--480. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling. 2008. Contraction Hierarchies: Faster and Simpler Hierarchical Routing in Road Networks. In WEA. 319--333. Google ScholarGoogle ScholarCross RefCross Ref
  39. Jeremy Gelb. 2021. spNetwork: A Package for Network Kernel Density Estimation. R Journal 13, 2 (2021).Google ScholarGoogle ScholarCross RefCross Ref
  40. Homayoun Harirforoush and Lynda Bellalite. 2019. A new integrated GIS-based analysis to detect hotspots: A case study of the city of Sherbrooke. Accident Analysis & Prevention 130 (2019), 62 -- 74. Road Safety Data Considerations. Google ScholarGoogle ScholarCross RefCross Ref
  41. Haibo Hu, Dik Lun Lee, and Victor C. S. Lee. 2006. Distance Indexing on Road Networks. In VLDB. 894--905. http://dl.acm.org/citation.cfm?id=1164204Google ScholarGoogle Scholar
  42. Ruoming Jin, Ning Ruan, Yang Xiang, and Victor E. Lee. 2012. A highway-centric labeling approach for answering distance queries on large sparse graphs. In SIGMOD. 445--456. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Jalal Khalil, Da Yan, Lyuheng Yuan, Mostafa Jafarzadehfadaki, Saugat Adhikari, Virginia P. Sisiopiku, and Zhe Jiang. 2022. Realistic urban traffic simulation with ride-hailing services: a revisit to network kernel density estimation (systems paper). In SIGSPATIAL. ACM, 29:1--29:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Pei-Fen Kuo and Dominique Lord. 2021. A visual approach for defining the spatial relationships among crashes, crimes, and alcohol retailers: Applying the color mixing theorem to define the colocation pattern of multiple variables. Accident Analysis & Prevention 154 (2021), 106062.Google ScholarGoogle ScholarCross RefCross Ref
  45. Jiajia Li, Cancan Ni, Dan He, Lei Li, Xiufeng Xia, and Xiaofang Zhou. 2023. Efficient kNN query for moving objects on time-dependent road networks. VLDB J. 32, 3 (2023), 575--594. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Lei Li, Mengxuan Zhang, Wen Hua, and Xiaofang Zhou. 2020. Fast Query Decomposition for Batch Shortest Path Processing in Road Networks. In ICDE. 1189--1200. Google ScholarGoogle ScholarCross RefCross Ref
  47. Qingquan Li, Tong Zhang, Handong Wang, and Zhe Zeng. 2011. Dynamic accessibility mapping using floating car data: a network-constrained density estimation approach. Journal of Transport Geography 19, 3 (2011), 379 -- 393. Special Issue : Geographic Information Systems for Transportation. Google ScholarGoogle ScholarCross RefCross Ref
  48. Ye Li, Leong Hou U, Man Lung Yiu, and Ngai Meng Kou. 2017. An Experimental Study on Hub Labeling based Shortest Path Algorithms. Proc. VLDB Endow. 11, 4 (2017), 445--457. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Zijian Li, Lei Chen, and Yue Wang. 2019. G*-Tree: An Efficient Spatial Index on Road Networks. In ICDE. IEEE, 268--279. Google ScholarGoogle ScholarCross RefCross Ref
  50. Siqiang Luo, Yifeng Luo, Shuigeng Zhou, Gao Cong, and Jihong Guan. 2014. Distributed Spatial Keyword Querying on Road Networks. In EDBT. OpenProceedings.org, 235--246. Google ScholarGoogle ScholarCross RefCross Ref
  51. Xiaoye Miao, Yunjun Gao, Su Guo, and Gang Chen. 2018. On Efficiently Answering Why-Not Range-Based Skyline Queries in Road Networks. IEEE Trans. Knowl. Data Eng. 30, 9 (2018), 1697--1711. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. M. Mehdi Moradi, Francisco J. Rodríguez-Cortés, and Jorge Mateu. 2018. On Kernel-Based Intensity Estimation of Spatial Point Patterns on Linear Networks. Journal of Computational and Graphical Statistics 27, 2 (2018), 302--311. Google ScholarGoogle ScholarCross RefCross Ref
  53. Jianhua Ni, Tianlu Qian, Changbai Xi, Yikang Rui, and Jiechen Wang. 2016. Spatial distribution characteristics of healthcare facilities in Nanjing: Network point pattern analysis and correlation analysis. International journal of environmental research and public health 13, 8 (2016), 833.Google ScholarGoogle ScholarCross RefCross Ref
  54. A. Okabe and K. Sugihara. 2012. Spatial Analysis Along Networks: Statistical and Computational Methods. Wiley. https://books.google.com.hk/books?id=48GRqj51_W8CGoogle ScholarGoogle Scholar
  55. Dian Ouyang, Dong Wen, Lu Qin, Lijun Chang, Ying Zhang, and Xuemin Lin. 2020. Progressive Top-K Nearest Neighbors Search in Large Road Networks. In SIGMOD. ACM, 1781--1795. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Dimitris Papadias, Jun Zhang, Nikos Mamoulis, and Yufei Tao. 2003. Query Processing in Spatial Network Databases. In VLDB. Morgan Kaufmann, 802--813. Google ScholarGoogle ScholarCross RefCross Ref
  57. Jeff M. Phillips. 2013. ∈-Samples for Kernels. In SODA. 1622--1632. Google ScholarGoogle ScholarCross RefCross Ref
  58. Jeff M. Phillips and Wai Ming Tai. 2018. Improved Coresets for Kernel Density Estimates. In SODA. 2718--2727. Google ScholarGoogle ScholarCross RefCross Ref
  59. Jeff M. Phillips and Wai Ming Tai. 2018. Near-Optimal Coresets of Kernel Density Estimates. In SOCG. 66:1--66:13. Google ScholarGoogle ScholarCross RefCross Ref
  60. QGIS Development Team. 2009. QGIS Geographic Information System. Open Source Geospatial Foundation. http://qgis.osgeo.orgGoogle ScholarGoogle Scholar
  61. Suman Rakshit, Adrian Baddeley, and Gopalan Nair. 2019. Efficient Code for Second Order Analysis of Events on a Linear Network. Journal of Statistical Software, Articles 90, 1 (2019), 1--37. Google ScholarGoogle ScholarCross RefCross Ref
  62. Michael N. Rice and Vassilis J. Tsotras. 2010. Graph Indexing of Road Networks for Shortest Path Queries with Label Restrictions. Proc. VLDB Endow. 4, 2 (2010), 69--80. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. João B. Rocha-Junior, Akrivi Vlachou, Christos Doulkeridis, and Kjetil Nørvåg. 2011. Efficient execution plans for distributed skyline query processing. In EDBT. ACM, 271--282. Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Gabriel Rosser, Toby O. Davies, Kate. Bowers, Shane D. Johnson, and T. Cheng. 2017. Predictive Crime Mapping: Arbitrary Grids or Street Networks? Journal of Quantitative Criminology 33 (2017), 569 -- 594.Google ScholarGoogle ScholarCross RefCross Ref
  65. Yikang Rui, Zaigui Yang, Tianlu Qian, Shoaib Khalid, Nan Xia, and Jiechen Wang. 2016. Network-constrained and category-based point pattern analysis for Suguo retail stores in Nanjing, China. International Journal of Geographical Information Science 30, 2 (2016), 186--199.Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. Hanan Samet, Jagan Sankaranarayanan, and Houman Alborzi. 2008. Scalable network distance browsing in spatial databases. In Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2008, Vancouver, BC, Canada, June 10-12, 2008, Jason Tsong-Li Wang (Ed.). ACM, 43--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. Mehdi Sharifzadeh, Cyrus Shahabi, and Leyla Kazemi. 2009. Processing spatial skyline queries in both vector spaces and spatial network databases. ACM Trans. Database Syst. 34, 3 (2009), 14:1--14:45. Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Boxi Shen, Xiang Xu, Jun Li, Antonio Plaza, and Qunying Huang. 2020. Unfolding Spatial-Temporal Patterns of Taxi Trip based on an Improved Network Kernel Density Estimation. ISPRS International Journal of Geo-Information 9, 11 (2020), 683.Google ScholarGoogle ScholarCross RefCross Ref
  69. Bilong Shen, Ying Zhao, Guoliang Li, Weimin Zheng, Yue Qin, Bo Yuan, and Yongming Rao. 2017. V-Tree: Efficient kNN Search on Moving Objects with Road-Network Constraints. In ICDE. 609--620. Google ScholarGoogle ScholarCross RefCross Ref
  70. Weiwei Sun, Chunan Chen, Baihua Zheng, Chong Chen, and Peng Liu. 2015. An Air Index for Spatial Query Processing in Road Networks. IEEE Trans. Knowl. Data Eng. 27, 2 (2015), 382--395. Google ScholarGoogle ScholarCross RefCross Ref
  71. Luliang Tang, Zihan Kan, Xia Zhang, Fei Sun, Xue Yang, and Qingquan Li. 2016. A network Kernel Density Estimation for linear features in spacetime analysis of big trace data. Int. J. Geogr. Inf. Sci. 30, 9 (2016), 1717--1737. Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. Jeppe Rishede Thomsen, Man Lung Yiu, and Christian S. Jensen. 2012. Effective caching of shortest paths for location-based services. In SIGMOD. 313--324. Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. Teng Wang, Yandong Wang, Xiaoming Zhao, and Xiaokang Fu. 2018. Spatial distribution pattern of the customer count and satisfaction of commercial facilities based on social network review data in Beijing, China. Computers, Environment and Urban Systems 71 (2018), 88--97. Google ScholarGoogle ScholarCross RefCross Ref
  74. Yuying Wu and Yijing Li. 2022. "Hot street" of crime detection in London borough and lockdown impacts. Geo-spatial Information Science (2022), 1--17.Google ScholarGoogle Scholar
  75. Zhixiao Xie and Jun Yan. 2008. Kernel Density Estimation of traffic accidents in a network space. Computers, Environment and Urban Systems 32, 5 (2008), 396 -- 406. Google ScholarGoogle ScholarCross RefCross Ref
  76. Zhixiao Xie and Jun Yan. 2013. Detecting traffic accident clusters with network kernel density estimation and local spatial statistics: an integrated approach. Journal of Transport Geography 31 (2013), 64 -- 71. Google ScholarGoogle ScholarCross RefCross Ref
  77. Hongfei Xu, Yu Gu, Yu Sun, Jianzhong Qi, Ge Yu, and Rui Zhang. 2020. Efficient processing of moving collective spatial keyword queries. VLDB J. 29, 4 (2020), 841--865. Google ScholarGoogle ScholarCross RefCross Ref
  78. Wenhao Yu, Tinghua Ai, and Shiwei Shao. 2015. The analysis and delimitation of Central Business District using network kernel density estimation. Journal of Transport Geography 45 (2015), 32--47. Google ScholarGoogle ScholarCross RefCross Ref
  79. Zhijie Zhang, Dongmei Chen, Wenbao Liu, Jeffrey Racine, Seng-Huat Ong, Yue Chen, Genming Zhao, and Qingwu Jiang. 2011. Nonparametric Evaluation of Dynamic Disease Risk: A Spatio-Temporal Kernel Approach. PloS one 6 (03 2011), e17381. Google ScholarGoogle ScholarCross RefCross Ref
  80. Jingwen Zhao, Yunjun Gao, Gang Chen, and Rui Chen. 2018. Why-Not Questions on Top-k Geo-Social Keyword Queries in Road Networks. In ICDE. IEEE, 965--976. Google ScholarGoogle ScholarCross RefCross Ref
  81. Yan Zheng, Jeffrey Jestes, Jeff M. Phillips, and Feifei Li. 2013. Quality and efficiency for kernel density estimates in large data. In SIGMOD. 433--444.Google ScholarGoogle Scholar
  82. Yan Zheng and Jeff M. Phillips. 2015. L∞ Error and Bandwidth Selection for Kernel Density Estimates of Large Data. In SIGKDD. 1533--1542. Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. Ruicheng Zhong, Guoliang Li, Kian-Lee Tan, Lizhu Zhou, and Zhiguo Gong. 2015. G-Tree: An Efficient and Scalable Index for Spatial Search on Road Networks. IEEE Trans. Knowl. Data Eng. 27, 8 (2015), 2175--2189. Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. Andy Diwen Zhu, Hui Ma, Xiaokui Xiao, Siqiang Luo, Youze Tang, and Shuigeng Zhou. 2013. Shortest path and distance queries on road networks: towards bridging theory and practice. In SIGMOD. 857--868. Google ScholarGoogle ScholarDigital LibraryDigital Library

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in

Full Access

  • Published in

    cover image Proceedings of the VLDB Endowment
    Proceedings of the VLDB Endowment  Volume 17, Issue 6
    February 2024
    369 pages
    ISSN:2150-8097
    Issue’s Table of Contents

    Publisher

    VLDB Endowment

    Publication History

    • Published: 3 May 2024
    Published in pvldb Volume 17, Issue 6

    Check for updates

    Qualifiers

    • research-article
  • Article Metrics

    • Downloads (Last 12 months)8
    • Downloads (Last 6 weeks)8

    Other Metrics

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader