skip to main content

Molecular Properties of Carboxymethyl Chitosan and Its Complexes with Curcumin and Nicotinamide in Drug Delivery Applications: Molecular Docking and Molecular Dynamic Study

1Physical Chemistry Laboratory, Department of Chemistry, Faculty of Science and Mathematics, Diponegoro University, Semarang, Indonesia

2Department of Chemistry, Faculty of Sciences and Mathematics, Diponegoro University, Semarang, Indonesia

3School of Basic Pharmaceutical and Toxicological Science, College of Pharmacy, University of Louisiana Monroe, Monroe, Lousiana, USA

4 Research Center for Computing, National Research and Innovation Agency (BRIN), Cibinong,, Indonesia

View all affiliations
Received: 20 Nov 2023; Revised: 11 Apr 2024; Accepted: 3 Apr 2024; Published: 30 Apr 2024.
Open Access Copyright 2024 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

Carboxymethyl chitosan (CMCs) is a chitosan-derived compound usually used as a carrier matrix in drug delivery systems. There are three types of CMCs based on the location of carboxyl group substitution: N-CMCs, O-CMCs, and N,O-CMCs. The ability of CMCs as a carrier is related to the ability of CMCs to interact with drug molecules. In this work, curcumin and nicotinamide were used as drug models. The ability of CMCs to interact with drug models can be observed by the amount of interaction energy generated when CMCs interact with curcumin and nicotinamide. The purpose of this study is to determine the interaction energy generated when CMCs interact with curcumin and nicotinamide using molecular docking and molecular dynamic methods. The results showed the interaction energy between O-CMCs, N-CMCs, and N,O-CMCs (2 and 3 monomers) with curcumin and nicotinamide, respectively, ranged from -17.08 to -13.37 and -12.05 to -11.00 Kj/mol. Conformational changes in molecular dynamic simulations affect bond-free energy, RMSD, and potential energy complex values.

Fulltext View|Download
Keywords: Intermolecular interaction; Carboxymethyl Chitosan; Curcumin; Nicotinamide; Molecular Mechanic
Funding: Diponegoro University

Article Metrics:

  1. Anna E. Caprifico, Peter J. S. Foot, Elena Polycarpou, Gianpiero Calabrese, Overcoming the Blood-Brain Barrier: Functionalised Chitosan Nanocarriers, Pharmaceutics, 12, 11, (2020), 1013 https://doi.org/10.3390/pharmaceutics12111013
  2. Mohamed E. Abd El-Hack, Mohamed T. El-Saadony, Manal E. Shafi, Nidal M. Zabermawi, Muhammad Arif, Gaber Elsaber Batiha, Asmaa F. Khafaga, Yasmina M. Abd El-Hakim, Adham A. Al-Sagheer, Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications: A review, International Journal of Biological Macromolecules, 164, (2020), 2726-2744 https://doi.org/10.1016/j.ijbiomac.2020.08.153
  3. Parsaoran Siahaan, Ni Wayan Pratiwi Triandani, Risky Ade Putra, Cholifatul Jannah, Dwi Hudiyanti, Suci Zulaikha Hildayani, Vivitri Dewi Prasasty, Carboxymethyl chitosan characteristic for drug delivery application and its intermolecular interactions, AIP Conference Proceedings, 2738, (2023), 050013 https://doi.org/10.1063/5.0140784
  4. Cholifatul Jannah, Dwi Hudiyanti, Vivitri Dewi Prasasty, Parsaoran Siahaan, Intermolecular interaction and molecular dynamics study of carboxymethyl Chitosan…Vitamin C molecular complex for understanding encapsulation and kinetics-controlled released mechanism, AIP Conference Proceedings, 2553, (2022), 020002 https://doi.org/10.1063/5.0103717
  5. Elmar Krieger, Gert Vriend, YASARA View—molecular graphics for all devices—from smartphones to workstations, Bioinformatics, 30, 20, (2014), 2981-2982 https://doi.org/10.1093/bioinformatics/btu426
  6. Errol G. Lewars, Computational Chemistry, 3th ed., Springer Cham, 2016, ^ https://doi.org/10.1007/978-3-319-30916-3
  7. Aleksandra Rudnitskaya, Béla Török, Marianna Török, Molecular docking of enzyme inhibitors, Biochemistry and Molecular Biology Education, 38, 4, (2010), 261-265 https://doi.org/10.1002/bmb.20392
  8. Jawher Makhlouf, Hitler Louis, Innocent Benjamin, Elizabeth Ukwenya, Arto Valkonen, Wajda Smirani, Single crystal investigations, spectral analysis, DFT studies, antioxidants, and molecular docking investigations of novel hexaisothiocyanato chromate complex, Journal of Molecular Structure, 1272, (2023), 134223 https://doi.org/10.1016/j.molstruc.2022.134223
  9. Vivekanand Bhardwaj, Majeti Naga Venkata Ravi Kumar, Polymeric Nanoparticles for Oral Drug Delivery, in: Nanoparticle Technology for Drug Delivery, CRC Press, Boca Raton, 2006, https://doi.org/10.1201/9780849374555
  10. George A. Jeffrey, An Introduction to Hydrogen Bonding, Oxford University Press, New York and Oxford, 1997,
  11. Diky Yopianto, Marta J. Sipangkar, Rikno Budiyanto, Parsaoran Siahaan, Studi Interaksi antara Segmen Dimer Kitosan dengan Peptida Ac-CA-NH2 dan Ac-TP-NH2 secara Komputasi Ab-Initio, Jurnal Kimia Sains dan Aplikasi, 19, 3, (2016), 118-125 https://doi.org/10.14710/jksa.19.3.118-125
  12. M. Subashini, Padma V. Devarajan, Ganeshchandra S. Sonavane, Mukesh Doble, Molecular dynamics simulation of drug uptake by polymer, Journal of Molecular Modeling, 17, (2011), 1141-1147 https://doi.org/10.1007/s00894-010-0811-8
  13. Ercheng Wang, Huiyong Sun, Junmei Wang, Zhe Wang, Hui Liu, John Z. H. Zhang, Tingjun Hou, End-Point Binding Free Energy Calculation with MM/PBSA and MM/GBSA: Strategies and Applications in Drug Design, Chemical Reviews, 119, 16, (2019), 9478-9508 https://doi.org/10.1021/acs.chemrev.9b00055
  14. Antonija Kuzmanic, Bojan Zagrovic, Determination of Ensemble-Average Pairwise Root Mean-Square Deviation from Experimental B-Factors, Biophysical Journal, 98, 5, (2010), 861-871 https://doi.org/10.1016/j.bpj.2009.11.011
  15. Fariba Razmimanesh, Sepideh Amjad-Iranagh, Hamid Modarress, Molecular dynamics simulation study of chitosan and gemcitabine as a drug delivery system, Journal of Molecular Modeling, 21, (2015), 165 https://doi.org/10.1007/s00894-015-2705-2
  16. S. Nanjundaswamy, S. Bindhu, R. R. Arun Renganathan, S. Nagashree, C. S. Karthik, P. Mallu, V. Ravishankar Rai, Design, synthesis of pyridine coupled pyrimidinone/pyrimidinthione as anti-MRSA agent: Validation by molecular docking and dynamics simulation, Journal of Biomolecular Structure and Dynamics, 40, 22, (2022), 12106-12117 https://doi.org/10.1080/07391102.2021.1968496
  17. Maya Mardiana, Ruswanto, Simulasi Dinamika Molekular Senyawa Pyridin Pada Protein 2Xnb Sebagai Antikanker Menggunakan Aplikasi Gromas, Prosiding Seminar Nasional dan Penelitian Kesehatan 2018, 2019
  18. Shisong Ren, Xueyan Liu, Peng Lin, Yangming Gao, Sandra Erkens, Molecular dynamics simulation on bulk bitumen systems and its potential connections to macroscale performance: Review and discussion, Fuel, 328, (2022), 125382 https://doi.org/10.1016/j.fuel.2022.125382
  19. Ken A. Dill, Dominant forces in protein folding, Biochemistry, 29, 31, (1990), 7133-7155 https://doi.org/10.1021/bi00483a001

Last update:

No citation recorded.

Last update: 2024-06-02 00:41:16

No citation recorded.