Skip to main content
Log in

Molecualr mechanisms regulating NGF-mediated enhancement of cholinergic neuronal phenotype: c-Fos trans-activation of the choline acetyltransferase gene

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Nerve growth factor (NGF) enhances expression of the cholinergic phenotype observed as increased choline acetyltransferase (ChAT) activity, immunoreactivity, and mRNA. In the present study, treatment of cultured rat embryonic basal forebrain neurons with anti-c-fos, prior to administering NGF, blocked NGF-mediated increases in ChAT activity by 67%; basal ChAT activity was not affected by the antisense oligonucleotide treatment. Reverse transcription-polymerase chain reaction (RT-PCR) revealed that anti-c-fos treatment resulted in not only blockade but enhancement of steady-state ChAT mRNA at different time points. These data suggest that c-fos is an important component in NGF-mediated changes in the cholinergic phenotype and support the hypothesis that c-fos plays a role in the regulation of transcription of the ChAT gene. Elucidation of mechanisms underlying this regulation may aid drug development in neurodegenerative disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bausero P., Schmitt M., Toussaint J. L., Simoni P., Geoffroy V., Queuche D., Duclaud S., Kempf J., and Quirin-Stricker C. (1993) Identification and analysis of the human choline acetyltransferase gene promoter. NeuroReport 4, 287–290.

    Article  PubMed  CAS  Google Scholar 

  • Bejanin S., Habert E., Berrard S., Edwards J.-B. D. M., Loeffler J.-P., and Mallet J. (1992) Promoter elements of the rat choline acetyltransferase gene allowing nerve growth factor inducibility in transfected primary cultured cells. J. Neurochem. 58, 1580–1583.

    Article  PubMed  CAS  Google Scholar 

  • Bennett C. F., Chiang M.-Y., Chan H., Shoemaker J. E. E., and Mirabelli C. K. (1992) Cationic lipids enhance cellular uptake and activity of phosphorothioate antisense oligonucleotides. Mol. Pharmacol. 41, 1023–1033.

    PubMed  CAS  Google Scholar 

  • Bonni A., Ginty D. D., Dudek H., and Greenberg M. E. (1995) Serine 133-phosphorylated CREB induces transcription via a cooperative mechanism that may confer specificity to neurotrophin signals. Mol. Cell. Neurosci. 6, 168–183.

    Article  PubMed  CAS  Google Scholar 

  • Bostwick J. R., Abbe R., and Appel S. H. (1992) Phosphoethanolamine enhances high-affinity choline uptake and acetylcholine synthesis in dissociated cell cultures of the rat septal nucleus. J. Neurochem. 59, 236–244.

    Article  PubMed  CAS  Google Scholar 

  • Bradford M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Cavicchioli L., Flanigan T. P., Dickson J. G., Vantini G., Dal Toso R., Fusco M., Walsh F. S., and Leon A. (1991) Choline acetyltransferase messenger RNA expression in developing and adult rat brain: regulation by nerve growth factor. Mol. Brain Res. 9, 319–325.

    Article  PubMed  CAS  Google Scholar 

  • Chomczynski P. and Sacchi N. (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159.

    Article  PubMed  CAS  Google Scholar 

  • Downen M., Mudd L., Roback J. D., Palfrey H. C., and Wainer B. H. (1993) Early nerve growth factor-induced events in developing rat septal neurons. Dev. Brain Res. 74, 1–13.

    Article  CAS  Google Scholar 

  • Dragunow M., Lawlor P., Chiasson B., and Robertson H. (1993) c-fos antisense generates apomorphine and amphetamine-induced rotation. NeuroReport 5, 305, 306.

    Article  PubMed  CAS  Google Scholar 

  • Fann M. F. and Patterson P. H. (1993) A novel approach to screen for cytokine effects on neuronal gene expression. J. Neurochem. 61, 1349–1355.

    Article  PubMed  CAS  Google Scholar 

  • Fonnum F. (1969) Radiochemical microassays for the determination of choline acetyltransferase and acetylcholinesterase activities. Biochem. J. 115, 465–479.

    PubMed  CAS  Google Scholar 

  • Gibbs R. B. and Martynowski C. (1997) Nerve growth factor induced Fos-like immunoreactivity within identified cholinergic neurons in the adult rat basal forebrain. Brain Res. 753, 141–151.

    Article  PubMed  CAS  Google Scholar 

  • Ginty D. D., Bonni A., and Greenberg M. E. (1994) Nerve growth factor activates a Ras-dependent protein kinase that stimulates c-fos transcription via phosphorylation of CREB. Cell 77, 713–725.

    Article  PubMed  Google Scholar 

  • Gizang-Ginsberg E. and Ziff E. B. (1994) Fos family members successively occupy the tyrosine hydroxylase gene AP-1 site after nerve growth factor or epidermal growth factor stimulation and can repress transcription. Mol. Endocrinol. 8, 249–262.

    Article  PubMed  CAS  Google Scholar 

  • Hagg K. T., Fass-Holmes B., Vahlsing H. L., Manthorpe M., Conner J. M., and Varon S. (1989) Nerve growth factor (NGF) reverses axotomy-induced decreases in choline acetyltransferase, NGF receptor and size of medial septum cholinergic neurons. Brain Res. 505, 29–38.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi M. and Patel A. J. (1987) An interaction between thyroid hormone and nerve growth factor in the regulation of choline acetyltransferase activity in neuronal cultures, derived from the septal-diagonal band region of the embryonic rat brain. Dev. Brain Res. 36, 109–120.

    Article  CAS  Google Scholar 

  • Hefti F., Dravid A., and Hartikka J. (1984) Chronic intraventricular injections of nerve growth factor elevate hippocampal choline acetyltransferase activity in adult rats with partial septo-hippocampal lesions. Brain Res. 293, 305–311.

    Article  PubMed  CAS  Google Scholar 

  • Hefti F., Hartikka J., and Sanchez-Roma J. (1989) Dissociated cholinergic neurons of the basal forebrain in culture, in A Dissection and Tissue Culture Manual of the Nervous System (Shahar A., de Vellis J., Vernadakis A., and Haber B. eds.), Liss, New York, pp. 172–182.

    Google Scholar 

  • Hefti F., Hartikka J., Eckenstein F., Gnahn H., Heumann R., and Schwab M. E. (1985) Nerve growth factor increases choline acetyltransferase but not survival or fiber outgrowth of cultured fetal septal cholinergic neurons. Neurosci. 14, 55–68.

    Article  CAS  Google Scholar 

  • Hersh L. B., Kong C. F., Sampson C., Mues G., Li Y.-P., Fisher A., Hilt D., and Baetge E. E. (1993) Comparison of the promoter region of the human and porcine choline acetyltransferase genes: localization of an important enhancer region. J. Neurochem. 61, 306–314.

    Article  PubMed  CAS  Google Scholar 

  • Higgins G. A., Koh S., Chen K., and Gage F. H. (1989) NGF induction of NGF receptor gene expression and cholinergic neuronal hypertrophy within the basal forebrain of the adult rat. Neuron 3, 247–256.

    Article  PubMed  CAS  Google Scholar 

  • Hooper M. L., Chiasson B. J., and Robertson H. A. (1994) Infusion into the brain of an antisense oligonucleotide to the immediate-early gene c-fos suppresses production of Fos and produces a behavioural effect. Neurosci. 63, 917–924.

    Article  CAS  Google Scholar 

  • Hunter A. J., Leslie R. A., Gloger I. S., and Lawrence M. (1995) Probing the function of novel genes in the nervous system: is antisense the answer? Trends Neurosci. 18, 329–331.

    Article  PubMed  CAS  Google Scholar 

  • Ibáñez C. F. and Persson H. (1991) Localization of sequences determining cell type specificity and NGF responsiveness in the promoter region of the rat choline acetyltransferase gene. Eur. J. Neurosci. 3, 1309–1315.

    Article  PubMed  Google Scholar 

  • Kengaku M., Misawa H., and Deguchi T. (1993) Multiple mRNA species of choline acetyltransferase from rat spinal cord. Mol. Brain Res. 18, 71–76.

    Article  PubMed  CAS  Google Scholar 

  • Kindy M. S. and Verma I. M. (1987) Inhibition of c-fos gene expression does not alter the differentiation pattern of PC12 cells, in Anti-Sense RNA and DNA (Melton D. A., ed.), Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, p. 129.

    Google Scholar 

  • Kobayashi M., Matsuoka I., and Kurihara K. (1994) Cholinergic differentiation of cultured sympathetic neurons induced by retinoic acid. Induction of choline acetyltransferase-mRNA and suppression of tyrosine hydroxylase-mRNA levels. FEBS Lett. 337, 259–264.

    Article  PubMed  CAS  Google Scholar 

  • Koliatsos V. E., Price D. L., Gouras G. K., Cayouette M. H., Burton L. E., and Winslow J. W. (1994) Highly selective effects of nerve growth factor, brain-derived neurotrophic factor, and neurotrophin-3 on intact and injured basal forebrain magnocellular neurons. J. Comp. Neurol. 343, 247–262.

    Article  PubMed  CAS  Google Scholar 

  • König H., Ponta H., Rahmsdorf U., Buscher M., Schönthal A., Rahmsdorf H. J., and Herrlich P. (1989) Autoregulation of fos: the dyad symmetry element as the major target of repression. EMBO J. 8, 2559–2566.

    PubMed  Google Scholar 

  • Kontny E., Ciruela R., Svenningsson P., Ibáñez C. F., and Fredholm B. B. (1997) On the role of the low-affinity neurotrophin receptor p75LNTR in nerve growth factor induction of differentiation and AP-1 binding activity in PC12 cells. J. Mol. Neurosci. 8, 29–44.

    PubMed  CAS  Google Scholar 

  • Kordower J. H., Winn S. R., Lui Y.-T., Mufson E. J., Slade J. R., Hammag J. P., Baetge E. E., and Emerich D. F. (1994) The aged monkey basal forebrain: rescue and sprouting of axotomized basal forebrain neurons after grafts of encapsulated cells secreting human nerve growth factor. Proc. Natl. Acad. Sci. USA 91, 10,898–10,902.

    CAS  Google Scholar 

  • Kreisberg J. I., Garoni J., Radnik R. A., Saikumar P., and Ayo S. H. (1994) High-glucose elevates c-fos and c-jun transcripts and proteins in mesangial cell cultures. Kidney Int. 46, 105–112.

    Article  PubMed  CAS  Google Scholar 

  • Lorenzi M. V., Knusel B., Hefti F., and Strauss W. L. (1992) Nerve growth factor regulation of choline acetyltransferase gene expression in rat embryo basal forebrain cultures. Neurosci. Lett. 140, 185–188.

    Article  PubMed  CAS  Google Scholar 

  • Lucas J. J., Mellstrom B., Colado M. I., and Naranjo J. R. (1993) Molecular mechanisms of pain: serotonin1A receptor agonists trigger transactivation by c-fos of the prodynorphin gene in spinal cord neurons. Neuron 10, 599–611.

    Article  PubMed  CAS  Google Scholar 

  • Mazzoni I. E. and Kenigsberg R. L. (1991) Thrombin indirectly affects cholinergic cell expression in primary septal cell cultures in a manner distinct from nerve growth factor. Neuroscience 45, 195–204.

    Article  PubMed  CAS  Google Scholar 

  • McCormack J. J., Bigelow J. C., Chrin L. R., and Mathews L. A. (1990) High-performance liquid chromatographic analysis of phosphorothioates in mice. J. Chromatogr. 533, 133–140.

    Article  Google Scholar 

  • Nudel U., Zakut R., Shani M., Neuman S., Levy Z., and Yaffe D. (1983) The nucleotide sequence of the rat cytoplasmic β-actin gene. Nucleic Acid Res. 11, 1759–1771.

    Article  PubMed  CAS  Google Scholar 

  • Ofir R., Dwarki V. J., Rashid V. J., and Verma I. M. (1990) Phosphorylation of the C-terminus of Fos protein is required for transcription transrepression of the c-fos promoter. Nature 348, 80–82.

    Article  PubMed  CAS  Google Scholar 

  • Pederson W. A., Guo Q., Hartman B. K., and Mattson M. P. (1997) Nerve growth factor-independent reduction in choline acetyltransferase activity in PC12 cells expressing mutant presenilin-1. J. Biol. Chem. 272, 22,397–22,400.

    Google Scholar 

  • Peng Z. C., Chen S., Fusco M., Vantini G., and Bentivolgio M. (1993) Fos induction by nerve growth factor in the adult rat brain. Brain Res. 632, 57–67.

    Article  PubMed  CAS  Google Scholar 

  • Pongrac J. L. and Rylett R. J. (1996) Differential effects of nerve growth factor on expression of choline acetyltransferase and sodium-coupled choline transport in basal forebrain cholinergic neurons in culture. J. Neurochem. 66, 804–810.

    Article  PubMed  CAS  Google Scholar 

  • Rylett R. J., Goddard S., Schmidt B. M., and Williams L. R. (1993) Acetylcholine synthesis and release following continuous intracerebral administration of NGF in adult and aged Fischer-344 rats. J. Neurosci. 13, 3956–3963.

    PubMed  CAS  Google Scholar 

  • Sassone-Corsi P., Sisson J. C., and Verma I. M. (1988) Transcriptional autoregulation of the proto-onogene fos. Nature 334, 314–319.

    Article  PubMed  CAS  Google Scholar 

  • Schmitt M., Bausero P., Simoni P., Queuche D., Geoffroy V., Marschal C., Kempf J., and Quirin-Stricker C. (1995) Positive and negative effects of nuclear receptors on transcription activation by AP-1 of the human choline acetyltransferase proximal promoter. J. Neurosci. Res. 40, 152–164.

    Article  PubMed  CAS  Google Scholar 

  • Sharp F. R., Gonzalez M. F., Hisanga K., Mobley W. C., and Sager S. M. (1989) Induction of the c-fos gene product in rat forebrain following cortical lesions and NGF injections. Neurosci. Lett. 100, 117–122.

    Article  PubMed  CAS  Google Scholar 

  • Sobreviela T., Clary D. O., Reichardt L. F., Brandabur M. M., Kordower J. H., and Mufson E. J. (1994) TrkA-immunoreactive profiles in the central nervous system: colocalization with neurons containing p75 nerve growth factor receptor, choline acetyltransferase and serotonin. J. Comp. Neurol. 350, 587–611.

    Article  PubMed  CAS  Google Scholar 

  • Sommer W., Bjelke B., Ganten D., and Fuxe K. (1993) Antisense oligonucleotide to c-fos induces ipsilateral rotational behaviour to d-amphetamine. NeuroReport 5, 277–280.

    Article  PubMed  CAS  Google Scholar 

  • Stach R. W., Garian N., and Olender E. J. (1979) Biological activity of the β nerve growth factor: the effects of various added proteins. J. Neurochem. 33, 257–261.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T., Kanagawa M., Takada Y., Fujimoto K., and Kawashima K. (1994a) Nerve growth factor treatment induces high-potassium-evoked calcium-dependent acetylcholine release in cultured embryonic rat septal cells. Brain Res. 665, 311–314.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki S., Pilowsky P., Minson J., Arnolda L., Llewellyn-Smith I. J., and Chambers J. (1994b) c-fos antisense in rostral ventral medulla reduces arterial blood pressure. Am. J. Physiol. 266, R1418-R1422.

    PubMed  CAS  Google Scholar 

  • Takei N., Tsukui H., and Hatanaka H. (1988) Intracellular storage and evoked release of acetylcholine from postnatal rat basal forebrain cholinergic neurons in culture with nerve growth factor. J. Neurochem. 53, 1405–1410.

    Article  Google Scholar 

  • Taylor L. K., Swanson K. D., Kerigan J., Mobley W., and Landreth G. E. (1994) Isolation and characterization of a nerve growth factor-regulated Fos kinase for PC12 cells. J. Biol. Chem. 269, 308–318.

    PubMed  CAS  Google Scholar 

  • Tian X., Sun X., and Suszkiw J. B. (1996) Developmental age-dependent upregulation of choline acetyltransferase and vesicular acetylcholine transporter mRNA expression in neonatal rat septum by nerve growth factor. Neurosci. Lett. 209, 134–136.

    Article  PubMed  CAS  Google Scholar 

  • Tuszynski M. H., Tuszynski U H. S., Yoshida K., and Gage F. H. (1991) Recombinant human nerve growth factor infusions prevent cholinergic neuronal degeneration in the adult primate brain. Ann. Neurol. 30, 625–636.

    Article  PubMed  CAS  Google Scholar 

  • Venero J. L., Beck K. D., and Hefti F. (1994) Intrastriatal infusion of nerve growth factor after quinolinic acid prevents reduction of cellular expression of choline acetyltransferase messenger RNA and trkA messenger RNA, but not glutamate decarboxylase messenger RNA. Neuroscience 61, 257–268.

    Article  PubMed  CAS  Google Scholar 

  • Wahlestedt C. (1994) Antisense oligonucleotide strategies in neuropharmacology. Trends Pharmacol. Sci. 15, 42–46.

    Article  PubMed  CAS  Google Scholar 

  • Wu D. and Hersh L. B. (1994) Choline acetyltransferase: celebrating its fiftieth year. J. Neurochem. 62, 257–268.

    Google Scholar 

  • Yu C., Brussard A. B., Yang M., Listerud M., and Role L. W. (1993) Uptake of antisense oligonucleotide and functional block of acetylcholine receptor subunit gene expression in primary embryonic neurons. Dev. Genetics 14, 296–304.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pongrac, J.L., Rylett, R.J. Molecualr mechanisms regulating NGF-mediated enhancement of cholinergic neuronal phenotype: c-Fos trans-activation of the choline acetyltransferase gene. J Mol Neurosci 11, 79–93 (1998). https://doi.org/10.1385/JMN:11:1:79

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:11:1:79

Index Entries

Navigation