Skip to main content
Log in

A role for the aryl hydrocarbon receptor in cardiac physiology and function as demonstrated by AhR knockout mice

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

The aryl hydrocarbon receptor (AhR), a ligand activated transcription factor, is the receptor for the polycyclic aromatic hydrocarbons found in tobacco smoke, polychlorinated biphenyls, and the environmental pollutant, dioxin. To better understand the role of the AhR in the heart, echocardiography, invasive measurements of aortic and left ventricular pressures, isolated working heart preparations, as well as morphological and molecular analysis were used to investigate the impact of AhR inactivation on the mouse heart using the AhR knockout as a model. Cardiac hypertrophy is an early phenotypic manifestation of the AhR knockout. Although the knockout animals were not hypertensive at the ages examined, cardiomyopathy accompanied by diminished cardiac output developed. Despite the structural left ventricular remodeling, the hearts of these animals exhibit minimal fibrosis and do not have the expected increases in surrogate molecular markers of cardiac hypertrophy. The anatomic remodeling without typical features of molecular remodeling is not consistent with hypertrophic growth secondary to pressure or volume overload, suggesting that increased cardiomyocyte size may be a direct consequence of the absence of the AhR in this cell type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lofroth, G. and Rannug, A. (1988). Ah receptor ligands in tobacco smoke. Toxicol. Lett. 42:131–136.

    Article  PubMed  CAS  Google Scholar 

  2. Rowlands, J.C. and Gustafsson, J.A. (1997). Aryl hydrocarbon receptor-mediated signal transduction. Crit. Rev. Toxicol. 27:109–134.

    Article  PubMed  CAS  Google Scholar 

  3. Savouret, J.F., Antenos, M., Quesne, M., Xu, J., Milgrom E., and Casper, R.F. (2001). 7-ketocholesterol is an endogenous modulator for the arylhydrocarbon receptor. J. Biol. Chem. 276:3054–3059.

    Article  PubMed  CAS  Google Scholar 

  4. Sinal, C.J. and Bend, J.R. (1997). Aryl hydrocarbon receptor-dependent induction of Cyplal by bilirubin in mouse hepatoma Hepa 1c1c7 cells. Mol. Pharmacol. 52:590–599.

    PubMed  CAS  Google Scholar 

  5. Phelan, D., Winter, G.M., Rogers, W.J., Lam, J.C., and Denison, M.S. (1998). Activation of the Ah receptor signal transduction pathway by bilirubin and biliverdin. Arch. Biochem. Biophys. 357:155–163.

    Article  PubMed  CAS  Google Scholar 

  6. Seidel, S.D., Winters, G.M., Rogers, W.J., Ziccardi, M.H., Li, V., Keser, B., and Denison, M.S. (2001). Activation of the Ah receptor signaling pathway by prostaglandins. J. Biochem. Mol. Toxicol. 15:187–196.

    Article  PubMed  CAS  Google Scholar 

  7. Casper, R.F., Quesne, M., Rogers, I.M., Shirota, T., Jolivet, A., Milgrom, E., and Savouret, J.F. (1999). Resveratrol has antagonist activity on the aryl hydrocarbon receptor: implications for prevention of dioxin toxicity. Mol. Pharmacol. 56:784–790.

    PubMed  CAS  Google Scholar 

  8. Ciolino, H.P. and Yeh, G.C. (1999). Inhibition of aryl hydrocarbon-induced cytochrome P-450 1A1 enzyme activity and CYP1A1 expression by resveratrol. Mol. Pharmacol. 56:760–767.

    PubMed  CAS  Google Scholar 

  9. Williams, S.N., Shih, H., Guenette, D.K., Brackney, W., Denison, M.S., Pickwell, G.V., and Quattrochi, L.C. (2000). Comparative studies on the effects of green tea extracts and individual tea catechins on human CYP1A gene expression. Chem. Biol. Interactions. 128:211–229.

    Article  CAS  Google Scholar 

  10. Song, J., Clagett-Dame, D., Peterson, R.E., Hahn, M.E., Westler, W.M., Sicinski, R.R., and DeLuca, H.F. (2002). A ligand for the aryl hydrocarbon receptor isolated from lung. Proc. Natl. Acad. Sci. USA 99:14694–14699.

    Article  PubMed  CAS  Google Scholar 

  11. Li, W., Donat, S., Dohr, O., Unfried, K., and Abel, J. (1994). Ah receptor in different tissues of C57BL/6J and DBA/2J mice: use of competitive polymerase chain reaction to measure Ah-receptor mRNA expression. Arch. Biochem. Biophys. 315:279–284.

    Article  PubMed  CAS  Google Scholar 

  12. Pesatori, A.C., Zocchetti, C., Guercilena, S., Consonni, D., Turrini D., and Bertazzi, P.A. (1998). Dioxin exposure and non-malignant health effects: A mortality study. Occup. Environ. Med. 55:126–131.

    Article  PubMed  CAS  Google Scholar 

  13. Vena, J., Boffetta, P., Becher, H., Benn, T., Bueno-de-Mesquita, H.B., Coggon, D., et al. (1998). Exposure to dioxin and nonneoplastic mortality in the expanded IARC international cohort study of phenoxy herbicide and chlorophenol production workers and sprayers. Environ. Health Perspect. 106(Suppl 2):645–653.

    Article  PubMed  CAS  Google Scholar 

  14. Canga, L., Paroli, L., Blanck, T.J., Silver, R.B., and Rifkind, A.B. (1993). 2,3,7,8-tetrachlorodibenzo-p-dioxin increases cardiac myocyte intracellular calcium and progressively impairs ventricular contractile responses to isoproterenol and to calcium in chick embryo hearts. Mol. Pharmacol. 44:1142–1151.

    PubMed  CAS  Google Scholar 

  15. Walker, M.K., Pollenz, R.S., and Smith, S.M. (1997). Expression of the aryl hydrocarbon receptor (AhR) and AhR nuclear translocator during chick cardiogenesis is consistent with 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced heart defects. Toxicol. Appl. Pharmacol. 143: 407–419.

    Article  PubMed  CAS  Google Scholar 

  16. Hornung, M.W., Spitsbergen, J.M., and Peterson, R.E. (1999). 2,3,7,8-Tetrachlorodibenzo-p-dioxin alters cardiovascular and carniofacial development and function in sac fry of rainbow trout (Oncorhynchus mykiss). Toxicol. Sci. 47:40–51.

    Article  PubMed  CAS  Google Scholar 

  17. Guiney, P.D., Walker, M.K., Spitsbergen, J.M., and Peterson, R.E. (2000). Hemodynamic dysfunction and cytochrome P4501A mRNA expression induced by 2,3, 7,8-tetrachlorodibenzo-p-dioxin during embryonic stages of lake trout development. Toxicol. Appl. Pharmacol. 168: 1–14.

    Article  PubMed  CAS  Google Scholar 

  18. Fan, L., Ovadia, M., Friedman, D.M., and Rifkind, A.B. (2000). Ventricular preexcitation sensitive to flecainide in late state chick embryo ECGs: 2,3,7,8-tetrachloro-dibenzo-p-dioxin impairs inotropic but not chronotropic or dromotropic responses to isoproterenol and confers resistance to flecainide. Toxicol. Appl. Pharmacol. 166:43–50.

    Article  PubMed  CAS  Google Scholar 

  19. Heid, S.E., Walker, M.K., and Swanson, H.I. (2001). Correlation of cardiotoxicity mediated by halogenated aromatic hydrocarbons to aryl hydrocarbon receptor activation. Toxicol. Sci. 61:187–196.

    Article  PubMed  CAS  Google Scholar 

  20. Kelling, C.K., Menahan, L.A., and Peterson, R.E. (1987). Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin treatment on mechanical function of the rat heart. Toxicol. Appl. Pharmacol. 91:497–501.

    Article  PubMed  CAS  Google Scholar 

  21. Brewster, D.W., Matsumura, F., and Akera, T. (1987). Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on guinea pig heart muscle. Toxicol. Appl. Pharmacol. 89:408–417.

    Article  PubMed  CAS  Google Scholar 

  22. Canga, L., Levi, R., and Rifkind, A.B. (1988). Heart as a target organ in 2,3,7,8-tetrachlorodibenzo-p-dioxin toxicity: Decreased beta-adrenergic responsiveness and evidence of increased intracellular calcium. Proc. Natl. Acad. Sci. USA 85:905–909.

    Article  PubMed  CAS  Google Scholar 

  23. Hermansky, S.J., Holeslaw, T.L., Murray, W.J., Markin, R.S., and Stohs, S.J. (1988). Biochemical and functional effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the heart of female rats. Toxicol. Appl. Pharmacol. 95: 175–184.

    Article  PubMed  CAS  Google Scholar 

  24. Clark, G.C., Taylor, M.J., Tritscher, A.M., and Lucier, G.W. (1991). Tumor necrosis factor involvement in 2,3,7,8-tetrachlorodibenzo-p-dioxin-mediated endotoxin hypersensitivity in C57BL/6J mice congenic at the Ah locus. Toxicol. Appl. Pharmacol. 111:422–431.

    Article  PubMed  CAS  Google Scholar 

  25. Dalton, T.P., Kerzee, J.K., Wang, B., Miller, M., Dieter, M.Z., Lorenz, J.N., Shertzer, H.G., Nebert, D.W., and Puga, A. (2001). Dioxin exposure is an environmental risk factor for ischemic heart disease. Cardiovasc. Toxicol. 2:285–298.

    Article  Google Scholar 

  26. Fernandez-Salguero, P.M., Ward, J.M., Sundberg, J.P., and Gonzalez, F.J. (1997). Lesions of aryl-hydrocarbon receptor-deficient mice. Vet. Pathol. 34:605–614.

    Article  PubMed  CAS  Google Scholar 

  27. Lahvis, G.P., Lindell, S.L., Thomas, R.S., McCuskey, R.S., Murphy, C., Glover, E., et al. (2000). Portosystemic shunting and persistent fetal vascular structures in aryl hydrocarbon receptor-deficient mice. Proc. Natl. Acad. Sci. USA 97:10442–10447.

    Article  PubMed  CAS  Google Scholar 

  28. Fernandez-Salguero, P., Pineau, T., Hilbert, D.M., McPhail, T., Kimura, S., Kimura, S., et al. (1995). Immune system impairment and hepatic fibrosis in mice lacking the dioxin-binding Ah receptor. Science 268:722–726.

    Article  PubMed  CAS  Google Scholar 

  29. Sahn, D.J., DeMaria, A., Kisslo, J., and Weyman, A. (1978). Recommendations regarding quantitation in M-mode echocardiography: Results of a survey of echocardiographic measurements. Circulation 58:1072–1083.

    PubMed  CAS  Google Scholar 

  30. Grupp, I.L., Subramaniam, A., Hewett, T.E., Robbins, J., and Grupp, G. (1993). Comparison of normal, hypodynamic, and hyperdynamic mouse hearts using isolated work-performing heart preparations. Am. J. Physiol. 265:H1401-H1410.

    PubMed  CAS  Google Scholar 

  31. Hewett, T.E., Grupp, I.L., Grupp, G., and Robbins, J. (1994). α-Skeletal actin is associated with increased contractility in the mouse heart. Circ. Res. 74:740–746.

    PubMed  CAS  Google Scholar 

  32. Anonymous. (1968). Manual of Histologic Staining Methods of the Armed Forces Institute of Pathology. New York: McGraw-Hill.

  33. Chomczynski, P. and Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156–169.

    Article  PubMed  CAS  Google Scholar 

  34. Seidman, C.E., Duby, A.D., Choi, E., Graham, R.M., Haber, E., Homey, C., Smith, J.A., and Seidman, J.G. (1984). The structure of rat preproatrial natriuretic factor as defined by a complementary DNA clone. Science 225: 324–326.

    Article  PubMed  CAS  Google Scholar 

  35. Piecharczyk, M., Blanchard, J.M., Dani, C., Panabieres, F., Sabouty, S.E., Fort, P., and Jeanteur, P. (1984). Post-transcriptional regulation of glyceraldehyde-3-phosphate-dehydrogenase gene expression in rat tissue. Nucl. Acids Res. 12:6951.

    Article  Google Scholar 

  36. Chien, K.R., Zhu, H., Knowlton, K.U., Miller-Hance, W., van-Bilsen, M., O'Brien, T.X., and Evans, S.M. (1993). Transcriptional regulation during cardiac growth and development. Ann. Rev. Physiol. 55:77–95.

    Article  CAS  Google Scholar 

  37. Hoshijima, M. and Chien, K.R. (2002). Mixed signals in heart failure: Cancer rules. J. Clin. Invest. 109:849–855.

    Article  PubMed  CAS  Google Scholar 

  38. Elferink, C.J., Ge, N.L., and Levine, A. (2001). Maximal aryl hydrocarbon receptor activity depends on an interaction with the retinoblastoma protein. Mol. Pharmacol. 59: 664–673.

    PubMed  CAS  Google Scholar 

  39. Ge, N.L. and Elferink, C.J. (1998). A direct interaction between the aryl hydrocarbon receptor and retinoblastoma protein. Linking dioxin signaling to the cell cycle. J. Biol. Chem. 273:22708–22713.

    Article  PubMed  CAS  Google Scholar 

  40. Kolluri, S.K., Weiss, C., Koff, A., and Gottlicher, M. (1999). p27(Kip1) induction and inhibition of proliferation by the intracellular Ah receptor in developing thymus and hepatoma cells. Genes Dev. 13:1742–1753.

    PubMed  CAS  Google Scholar 

  41. Santini, R.P., Myrand, S., Elferink, C., and Reiners, J.J., Jr. (2001). Regulation of Cyp1a1 induction by dioxin as a function of cell cycle phase. J. Pharmacol. Exp. Ther. 299: 718–728.

    PubMed  CAS  Google Scholar 

  42. Puga, A., Barnes, S.J., Dalton, T.P., Chang, C., Knudsen, E.S., and Maier, M.A. (2000). Aromatic hydrocarbon receptor interaction with the retinoblastoma protein potentiates repression of E2F-dependent transcription and cell cycle arrest. J. Biol. Chem. 275:2943–2950.

    Article  PubMed  CAS  Google Scholar 

  43. Puga, A., Xia, Y., and Elferink, C. (2002). Role of the aryl hydrocarbon receptor in cell cycle regulation. Chem. Biol. Interactions 141:117–130.

    Article  CAS  Google Scholar 

  44. Bral, C.M. and Ramos, K.S. (1997). Identification of benzo[a]pyrene-inducible cis-acting elements within c-Haras transcriptional regulatory sequences. Mol. Pharmacol. 52:974–982.

    PubMed  CAS  Google Scholar 

  45. Kerzee, J.K. and Ramos, K.S. (2000). Activation of c-Haras by benzo(a)pyrene in vascular smooth muscle cells involves redox stress and aryl hydrocarbon receptor. Mol. Pharmacol. 58:152–158.

    PubMed  CAS  Google Scholar 

  46. Lai, Z.W., Pineau, T., and Esser, C. (1996). Identification of dioxin-responsive elements (DREs) in the 5′ regions of puttive dioxin-inducible genes. Chem. Biol. Interactions 100:97–112.

    Article  CAS  Google Scholar 

  47. Chen, Y.H. and Tukey, R.H. (1996). Protein kinase C modulates regulation of the CYP1A1 gene by the aryl hydrocarbon receptor. J. Biol. Chem. 271:26261–26266.

    Article  PubMed  CAS  Google Scholar 

  48. Crawford, R.B., Holsapple, M.P., and Kaminski, N.E. (1997). Leukocyte activation induces aryl hydrocarbon receptor up-regulation, DNA binding, and increased Cyp1a1 expression in the absence of exogenous ligand. Mol. Pharmacol. 52:921–927.

    PubMed  CAS  Google Scholar 

  49. Long, W.P., Pray-Grant, M., Tsai, J.C., and Perdew, G.H. (1998). Protein kinase C activity is required for aryl hydrocarbon receptor pathway-mediated signal transduction. Mol. Pharmacol. 53:691–700.

    PubMed  CAS  Google Scholar 

  50. Long, W.P. and Perdew, G.H. (1999). Lack of an absolute requirement for the native aryl hydrocarbon receptor (AhR) and AhR nuclear translocator transactivation domains in protein kinase C-mediated modulation of the AhR pathway. Arch. Biochem. Biophys. 371:246–259.

    Article  PubMed  CAS  Google Scholar 

  51. Frey, N. and Olson, E.N. (2003). Cardiac hypertrophy: The good, the bad, and the ugly. Ann. Rev. Physiol. 65:45–79.

    Article  CAS  Google Scholar 

  52. Stegeman, J.J., Hahn, M.E., Weisbrod, R., Woodin, B.R., Joy, J.S., Najibi, S., and Cohen, R.A. (1995). Induction of cytochrome P4501A1 by aryl hydrocarbon receptor agonists in porcine aorta endothelial cells in culture and cytochrome P4501A1 activity in intact cells. Mol. Pharmacol. 47:296–306.

    PubMed  CAS  Google Scholar 

  53. Kerzee, J.K. and Ramos, K.S. (2001). Constitutive and inducible expression of Cyp1a1 and Cyp1b1 in vascular smooth muscle cells: role of the AhrbHLH/PAS transcription factor. Circ. Res. 89:573–582.

    PubMed  CAS  Google Scholar 

  54. Thum, T. and Borlak, J. (2000). Cytochrome P450 mono-oxygenase gene expression and protein activity in cultures of adult cardiomyocytes of the rat. Br. J. Pharmacol. 130: 1745–1752.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen L. Vikstrom PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasquez, A., Atallah-Yunes, N., Smith, F.C. et al. A role for the aryl hydrocarbon receptor in cardiac physiology and function as demonstrated by AhR knockout mice. Cardiovasc Toxicol 3, 153–163 (2003). https://doi.org/10.1385/CT:3:2:153

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/CT:3:2:153

Key Words

Navigation