Skip to main content

Analysis of DNA Knots and Catenanes by Agarose-Gel Electrophoresis

  • Protocol
  • First Online:
DNA Topoisomerase Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 94))

  • 1143 Accesses

Abstract

Supercoiling, knotting, and catenation are three common higher-order structures involving coiling of the axis of double-stranded DNA. These forms appear as a result of a number of important biological activities, including topoisomerase action, DNA replication, and genetic recombination (1-3). All of these species have mobilities in agarose gels that are distinct from those of normal open circular and linear DNA molecules of the same size. The electrophoretic properties of linking number topoisomers are dealt with elsewhere in this volume; this chapter focuses on the separation and characterization of mixtures of knotted or catenated forms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sundin, O. and Varshavsky, A. (1981) Arrest of segregation leads to accumulation of highly intertwined catenated dimers: dissection of the final stages of SV40 DNA replication. Cell 25, 659–669.

    Article  CAS  Google Scholar 

  2. Bliska, J. B. and Cozzarelli, N. R. (1987) Use of site-specific recombination as a probe of DNA structure and metabolism in vivo. J. Mol. Biol. 194, 205–218.

    Article  CAS  Google Scholar 

  3. Ullsperger, C. J., Vologodskii, A. V., and Cozzarelli, N. R. (1995) Unlinking of DNA by topoisomerases during DNA replication, in Nucleic Acids and Molecular Biology, vol. 9 (Eckstein, F. and Lilley, D. M. J., eds.), Springer-Verlag, Heidelberg, Germany, pp. 115–142.

    Chapter  Google Scholar 

  4. Benjamin, H. W. and Cozzarelli, N. R. (1986) DNA-directed synapsis in recombination: slithering and random collision of sites, in Proceedings of the Robert A. Welch Foundation Conferences on Chemical Research, vol. XXIX, Genetic Chemistry: The Molecular Basis of Heredity, Robert A. Welch Foundation, Houston, TX, pp. 107–126.

    Google Scholar 

  5. Wasserman, S. A. and Cozzarelli, N. R. (1986) Biochemical topology: application to DNA recombination and replication. Science 232, 951–960.

    Article  CAS  Google Scholar 

  6. Adams, C. C. (1994) The Knot Book. An Elementary Introduction to the Mathematical Theory of Knots. W. H. Freeman, New York, NY, p. 33.

    Google Scholar 

  7. Shapiro, T. A. and Englund, P. T. (1995) The structure and replication of kinetoplast DNA. Annu. Rev. Microbiol. 49, 117–143.

    Article  CAS  Google Scholar 

  8. Adams, D. E., Shekhtman, E. L., Zechiedrich, E. L., Schmid, M. B., and Cozzarelli, N. R. (1992) The role of topoisomerase IV in partitioning bacterial replicons and the structure of catenated intermediates in DNA replication. Cell 71, 277–288.

    Article  CAS  Google Scholar 

  9. Spengler, S. J., Stasiak, A., and Cozzarelli, N. R. (1985) The stereostructure of knots and catenanes produced by phage μ integrative recombination: implications for mechanism and DNA structure. Cell 42, 325–334.

    Article  CAS  Google Scholar 

  10. Beatty, L. G., Babineau-Clary, D., Hogrefe, C., and Sadowski, P. D. (1986) FLP site-specific recombinase of yeast 2-μm plasmid. Topological features of the reaction. J. Mol. Biol. 188, 529–544.

    Article  CAS  Google Scholar 

  11. Landy, A. (1989) Dynamic, structural, and regulatory aspects of lambda site-specific recombination. Annu. Rev. Biochem. 58, 913–949.

    Article  CAS  Google Scholar 

  12. Better, M., Lu, C., Williams, R. C., and Echols, H. (1982) Site-specific DNA condensation and pairing mediated by the int protein of bacteriophage λ. Proc. Natl. Acad. Sci. USA 79, 5837–5841.

    Article  CAS  Google Scholar 

  13. Richet, E., Abcarian, P., and Nash, H. A. (1988) Synapsis of attachment sites during lambda integrative recombination involves capture of a naked DNA by a protein-DNA complex. Cell 52, 9–17.

    Article  CAS  Google Scholar 

  14. Crisona, N. J., Kanaar, R., Gonzales, T. N., Zechiedrich, E. L., Klippel, A., and Cozzarelli, N. R. (1994) Processive recombination by wild-type Gin and an enhancer-independent mutant. Insight into the mechanisms of recombination and strand exchange. J. Mol. Biol. 243, 437–457.

    Article  CAS  Google Scholar 

  15. Krasnow, M. A., Stasiak, A., Spengler, S. J., Dean, F., Koller, T., and Cozzarelli, N. R. (1983) Determination of the absolute handedness of knots and catenanes of DNA. Nature 304, 559–560.

    Article  CAS  Google Scholar 

  16. Lee, E. C., Gumport, R. I., and Gardner, J. F. (1990) Genetic analysis of bacte-riophage λ integrase interactions with arm-type attachment site sequences. J. Bacteriol. 172, 1529–1538.

    Article  CAS  Google Scholar 

  17. Nash, H. A. (1983) Purification and properties of the bacteriophage lambda Int protein. Methods Enzymol. 100, 210–216.

    Article  CAS  Google Scholar 

  18. Nash, H. A., Robertson, C. A., Flamm, E., Weisberg, R. A., and Miller, H. I. (1987) Overproduction of Escherichia coli integration host factor, a protein with nonidentical subunits. J. Bacteriol. 169, 4124–4127.

    Article  CAS  Google Scholar 

  19. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed., vol. 1. Cold Spring Harbor Laboratory Press, Plainview, NY, pp. 1.21–1.53.

    Google Scholar 

  20. Barzilai, R. (1973) SV40 DNA: quantitative conversion of closed circular to open circular form by an ethidium bromide-restricted endonuclease. J. Mol. Biol. 74, 739–742.

    Article  CAS  Google Scholar 

  21. Rybenkov, V. V., Cozzarelli, N. R., and Vologodskii, A. V. (1993) Probability of DNA knotting and the effective diameter of the DNA double helix. Proc. Natl. Acad. Sci. USA 90, 5307–5311.

    Article  CAS  Google Scholar 

  22. Wasserman, S. A. and Cozzarelli, N. R. (1991) Supercoiled DNA-directed knotting by T4 topoisomerase. J. Biol. Chem. 266, 20,567–20,573.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Humana Press Inc.

About this protocol

Cite this protocol

Levene, S.D., Tsen, H. (1999). Analysis of DNA Knots and Catenanes by Agarose-Gel Electrophoresis. In: Bjornsti, MA., Osheroff, N. (eds) DNA Topoisomerase Protocols. Methods in Molecular Biology, vol 94. Humana, Totowa, NJ. https://doi.org/10.1385/1-59259-259-7:75

Download citation

  • DOI: https://doi.org/10.1385/1-59259-259-7:75

  • Published:

  • Publisher Name: Humana, Totowa, NJ

  • Print ISBN: 978-0-89603-444-0

  • Online ISBN: 978-1-59259-259-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics