Skip to main content
Advertisement
Browse Subject Areas
?

Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here.

< Back to Article

Single-Cell Analysis and Next-Generation Immuno-Sequencing Show That Multiple Clones Persist in Patients with Chronic Lymphocytic Leukemia

Fig 3

Multiclonality is frequently observed in M-CLL.

IGH sequence frequencies were characterized by next-generation IGH sequencing and are plotted on log scale from 0.1–100%. Samples included a) seven CLL patients characterized as having more than one clone by SCA (U-CLL: CLL-67, CLL-100; M-CLL: CLL-43, CLL-105, CLL-112, CLL129, CLL200), b) six typical CLL with single B-cell clone (U-CLL: CLL-102, CLL-106, CLL-110; M-CLL: CLL108, CLL-127, CLL-184), c) three healthy donors (N1, N2, N3), and d) three MM and two WM patients in whom two B-cell clones were previously reported (MM_PT3, MM_PT4, MM_PT5, WM1-09 and WM1-19) [19, 20]. For sample N3, top frequencies were ≤0.035%, thus were placed outside of the y-axis for reference only, not to scale. An arbitrary cutoff line was drawn at the highest frequency found in HD. Dominant clones in CLL are defined as those with frequencies above the cutoff line. The number of dominant clones for each sample is shown on the right. Closed circle, clone identified by both ImmunoSEQ and SCA; open circle, clone identified only by ImmunoSEQ.

Fig 3

doi: https://doi.org/10.1371/journal.pone.0137232.g003