Skip to main content
Advertisement
Browse Subject Areas
?

Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here.

< Back to Article

Identification and Functional Analysis of the erh1+ Gene Encoding Enhancer of Rudimentary Homolog from the Fission Yeast Schizosaccharomyces pombe

Figure 1

ERH genes and ERH proteins from four Schizosaccharomyces species.

(A) Intron-exon organization of ERH genes from S. pombe (Sperh1+), S. octosporus (Soerh1+), S. cryophilus (Scerh1+) and S. japonicus (Sjerh1+). Number in parentheses gives total length of CDS plus introns. Black blocks represent exons and are drawn to scale; numbers on top give their lengths in bp. Incisions with numbers indicate intron positions and their length in bp. Consecutive introns are labeled with Roman numerals. (B) Alignment of ERH amino acid sequences from S. pombe (SpErh1p), S. octosporus (SoErh1p), S. cryophilus (ScErh1p) and S. japonicus (SjErh1p). Human ERH is shown as a reference sequence. Numbering according to SpErh1p. Number in parentheses indicates the length of the protein. Dots indicate identical residues and blanks denote missing amino acids. Table shows percent identity of sequences. (C) Predicted three-dimensional structure of Sperh1p generated by SWISS-MODEL using coordinates for human ERH from Protein Data Bank (PDB identifier: 2nmlA). Protein images produced with UCSF Chimera. Helices α1 and α2 and loop α1-α2 in both proteins and the first (Q46) and last (D55) amino acid residues of loop α1-α2 in SpErh1p are indicated. (D) Intron IV-exon V junctions in Sperh1+ and Sjerh1+ and intron I-exon II junction in Sperh1+. Sequences of introns are italicized. The AG sequence of the 3′ splice site is underlined and the neighboring AG is denoted by lower case. For details see text.

Figure 1

doi: https://doi.org/10.1371/journal.pone.0049059.g001