Skip to main content
Advertisement
Browse Subject Areas
?

Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here.

< Back to Article

S9, a Novel Anticancer Agent, Exerts Its Anti-Proliferative Activity by Interfering with Both PI3K-Akt-mTOR Signaling and Microtubule Cytoskeleton

Figure 1

S9 inhibits PI3K-Akt-mTOR signaling.

A–B), S9 depresses EGF-triggered activation of PI3K-Akt-mTOR signaling pathway. Serum-deprived Rh30 cells (A) and SK-OV-3 cells (B) were treated with indicated concentrations of S9 for 1 h followed by EGF (50 ng/ml) stimulation for 10 min. Cells were harvested for Western blot analysis with antibodies specific for p-PDK1 (S241), PDK, p-Akt (T308), p-Akt (S473), Akt, p-mTOR (Ser2448), mTOR, p-p70S6K (T389), p70S6K, p-4E-BP1(T37/64), p-4E-BP1 (T70), 4E-BP1 and actin. Arrows indicate p70 isoform of S6 kinase protein. C) S9 blocks Akt membrane translocation and membrane ruffling. CHO (pCORON1000-EGFP-Akt) cells seeded on chamber were starved for 2 h then treated with 5 or 10 µM S9 for 1 h followed by IGF stimulation for 5 min. Fluorescent pictures were captured with confocal fluorescent microscopy. White arrows indicate cell membrane ruffling. Blue arrows indicate fluorescent foci. D) Total Akt granule intensity in each CHO (pCORON1000-EGFP-Akt) cell was counted with statistic module by IN Cell Analyzer 1000. Data shown are representative from two independent experiments.

Figure 1

doi: https://doi.org/10.1371/journal.pone.0004881.g001