Skip to main content
Advertisement

< Back to Article

Ribosome binding protein GCN1 regulates the cell cycle and cell proliferation and is essential for the embryonic development of mice

Fig 1

Establishment of Gcn1 KO and Gcn1ΔRWDBD mice.

(A) Schematic structure of the Gcn1 KO allele. Gcn1 KO mice were generated by the CRISPR/Cas9 system. Double-strand breaks were induced within introns 1 and 2, and exon 2 was excised. (B) Schematic structure of the mutant GCN1 protein produced in Gcn1 KO mice. In Gcn1 KO mice, exon 2 of the Gcn1 gene was deleted, resulting in a frameshift and premature stop codon in exon 3. Thus, Gcn1 KO mice only expressed a short form of the GCN1 protein, consisting of the N-terminus 12 amino acids (a.a.) and lacked a well-conserved eEF3-like domain and RWD binding domain. (C) Representative pictures of the Gcn1 KO embryos at E10.5. Enlarged pictures of the Gcn1 KO embryos are shown in the right panel. Scale bar: 1 mm. (D) Schematic structure of the Gcn1ΔRWDBD allele. Gcn1ΔRWDBD mice were generated by the CRISPR/Cas9 system. Double-strand breaks were induced within introns 45 and 53, and exons 46–53 were excised. (E) Schematic structure of the mutant GCN1 protein produced in Gcn1ΔRWDBD mice. GCN1ΔRWDBD mice lack the RWD binding domain. (F) Representative pictures of the embryos at E9.5. Scale bar: 1 mm. (G) Representative pictures of the embryos at E14.5. Scale bar: 5 mm. (H) Enlarged pictures of the embryos at E14.5. Limb development was delayed in the Gcn1ΔRWDBD embryo. Scale bar: 5 mm. (I) Representative pictures of the embryos at E18.5. The arrowhead indicates the abnormality of the head or an anencephaly-like phenotype.

Fig 1

doi: https://doi.org/10.1371/journal.pgen.1008693.g001