Skip to main content
Advertisement

< Back to Article

Nonlinear effects of intrinsic dynamics on temporal encoding in a model of avian auditory cortex

Fig 1

Linear-dynamical cascade model.

(A) The linear stage of the model consists of the convolution of a stimulus with a receptive field. The output of the convolution (Dstim(t)) is combined with a stimulus-independent noise signal (Dnoise(t)) with a 1/f spectral distribution. The sum of Dnoise(t) and Dstim(t) is converted to the input current I(t) using a static nonlinearity, ensuring that the model voltage remains within biologically realistic bounds. (B) I(t) enters into the biophysical stage, which models membrane voltage dynamics as a system of ordinary differential equations. (C) The model is numerically integrated to produce a simulated voltage trace. Multiple trials are simulated by keeping Dstim(t) the same from trial to trial, while drawing new values for Dnoise(t).

Fig 1

doi: https://doi.org/10.1371/journal.pcbi.1008768.g001