Skip to main content
Advertisement

< Back to Article

Parsimonious Higher-Order Hidden Markov Models for Improved Array-CGH Analysis with Applications to Arabidopsis thaliana

Figure 4

Identification of deletions and sequence deviations in the Arabidopsis Array-CGH data set by parsimonious HMMs.

Curves of mean true-positive-rates (TPRs) for the identification of candidate regions of deletions or sequence deviations at a fixed false-positive-rate (FPR) of 1% (a)) and of 2.5% (b)) obtained by parsimonious HMMs of order of different model complexities across twenty different initializations. The rightmost point of each curve of parsimonious HMMs of order (PHMM()) represents the corresponding higher-order HMM of order with highest model complexity of leaf nodes in the state-context tree underlying the transition matrix . The rightmost point of the black curve represents the standard first-order HMM. Standard deviations of the mean TPRs are shown in Figure S4 in Text S1. At both levels of FPRs, parsimonious higher-order HMMs are clearly better than parsimonious HMMs of order one including the standard first-order HMM. At the level of 1% FPR, parsimonious higher-order HMMs with a mean model complexity in the range of 3 up to 9 also identify deletions or sequence deviations better than higher-order HMMs. At 2.5% FPR, clearly reduced model complexities are sufficient to reach identifications of deletions or sequence deviations by parsimonious higher-order HMMs comparable or slightly better than corresponding higher-order HMMs.

Figure 4

doi: https://doi.org/10.1371/journal.pcbi.1002286.g004