Skip to main content
Advertisement

< Back to Article

Image-Based Modeling Reveals Dynamic Redistribution of DNA Damage into Nuclear Sub-Domains

Figure 7

Rdna and Rgrad Computation Confirm Rapid Relocation to Dim–Bright Nuclear Interfaces with a Lower Proportion of Foci in the High DNA Density Regions after Exposure to 1 Gy of 1 GeV/amu Fe

Measured Rdna and Rgrad normalized to predicted values are graphed in (A–C). For all DNA damage markers analyzed here, all Rgrad ratios are above 1 and Rdna ratios are below one. This indicates a tendency of RIF to locate themselves at the interface between high and low DNA density regions and preferably in the low DNA density regions. This tendency is stronger within the first 10 min following exposure to radiation and statistically significant for γH2AX and 53BP1 for the first 30 min post-IR (significance is labeled by an asterisk with the number of independent experiments in parentheses, statistical test based on t-test between measured averages and predicted ones. Predictions are based on reshuffling original RIF. Based on that test, a 95% confidence interval for expected normalized ratios is shown as the gray area). For ATMp, only the earliest time point was statistically significant, indicating a return to normality much faster than the other markers. A representative nucleus 3 min post-IR is shown in (D), with γH2AX RIF appearing as a green signal and DAPI shown as blue. The white dashed arrow indicates the traversal of one Fe particle, and small solid-color arrows indicate specific RIF. The same nucleus is seen in (E) with the DAPI intensity displayed in a 3-D topographic blue surface and segmented γH2AX RIF shown as green beads. (Rendering done with Bitplane, http://www.bitplane.com/). (F) shows the same topographic view, sectioned along the particle trajectory to better appreciate the position of RIF with respect to the DAPI intensity profile. For orientation purposes, the same RIF shown with solid color arrows in (D) are shown in (E) and clearly illustrate the preferred location of RIF at the interface between high and low DNA density regions.

Figure 7

doi: https://doi.org/10.1371/journal.pcbi.0030155.g007