Skip to main content
Advertisement

< Back to Article

BEAF Regulates Cell-Cycle Genes through the Controlled Deposition of H3K9 Methylation Marks into Its Conserved Dual-Core Binding Sites

Figure 1

BEAF Dual-Cores Define a New Class/Family of Chromatin Elements

(A) BEAF single-element and dual-core predictions are shown in parallel with immunostaining with anti-BEAF antibodies for Chromosome 4 (1.2 Mbp; (A); D1 = recognizable band of Chromosome 4). Each single element contains ≥3 BEAF CGATA consensus motifs within 200 bp, and each dual-core corresponds to two juxtaposed single BEAF elements (see text).

(B,C) Statistical analysis of dual-cores. (B) Shows the distribution of 12,058 CGATA motifs of dual-cores into two clusters (3CGATAs × 2) separated by a CGATA-free spacer. (C) Shows the localization of AT-rich 200-bp windows (>70% A+T) in the spacer. Position 0 is the location of the right-most CGATA motif in the first cluster of dual-cores. This analysis includes dual core–like elements, which contain two (instead of three) CGATAs within 100 bp in the second cluster.

(D) ChIP analysis with anti-BEAF or control IgG antibodies on DNA sequences corresponding to the indicated dual-cores or control regions. CGATAs are represented by arrowheads. Numbers below each blot represent the percentage of immunoprecipitated DNA over input genomic DNA as standard.

(E) The BEAF dual-core signature.

Figure 1

doi: https://doi.org/10.1371/journal.pbio.0060327.g001