Skip to main content
Log in

Prediction of Human Drug Absorption Using Liposome Electrokinetic Chromatography

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

With the tremendously increasing numbers of novel drug candidates, there remains a compelling need for rapid screening methods for drug-like physiochemical and pharmacokinetic properties. Different technologies have emerged that enable rapid screening in vitro for sorting out new chemical entity (NCE) classes. It is invaluable for these technologies being developed early in the drug discovery process to avoid the loss of cost and time in late development due to poor absorption and/or bioavailability. In this study, liposome electrokinetic chromatography (LEKC) serves as a convenient, rapid and cost-effective tool to determine lipophilicity and to predict human oral absorption. Twenty-seven organic neutral molecules were evaluated by octanol/water system (log P ow) and LEKC (log k), and linear solvation energy relationship (LSER) analysis was conducted to compare the retention mechanism between LEKC and octanol/water system. LEKC can provide a rapid indirect measurement of log P ow for small organic neutral molecules. A clearly sigmoidal relationship could be seen by correlating log k with the fraction of 25 drugs absorbed in humans (Fa), and the outliers suggested the involvement of non-transcellular passive diffusion, e.g. active transport, paracellular route; on the contrary, it is not the case with the octanol/water system. Therefore, LEKC, in combination with other permeability prediction model, can provide a primary screen for a large number of drug candidates at early stage of the drug discovery process with high-throughput and at low-cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Leo A, Hansch C, Elkins D (1971) Chem Rev 71:525–394

    Article  CAS  Google Scholar 

  2. Waterbeemd H Vd (2003) Drug bioavailability. In: Waterbeemd H Vd, Lennernäs H, Artursson P (eds) Physico-chemical approaches to drug absorption. Wiley, New York, pp 3–20

  3. Fujita T, Iwasa J, Hansch C (1964) J Am Chem Soc 86:5175–5180

    Article  CAS  Google Scholar 

  4. Poole SK, Durtham D, Kibbey C (2000) J Chromatogr A 745:117–126

    CAS  Google Scholar 

  5. Herbert BJ, Dorsey JG (1995) Anal Chem 67:744–749

    Article  CAS  Google Scholar 

  6. Liu XY, Nakamura C, Yang Q, Kamo N, Miyake J (2002) J Chromatogr A 961:113–118

    Article  CAS  Google Scholar 

  7. Escuder-Gilabert J, Martínez-Pla JJ, Sagrado S, Villanueva-Camañas RM, Medina-Hernández MJ (2003) J Chromatogr B 797:21–53

    Article  CAS  Google Scholar 

  8. Sun J, Deguchi Y, Chen JM, Zhang RH, Morimoto K (2002) Die Pharmazie 57:497–498

    CAS  Google Scholar 

  9. Sun J, Deguchi Y, Chen JM, Zhang RH, Morimoto K (2002) Acta Pharmacol Sin 23:430–438

    CAS  Google Scholar 

  10. Sun J, Zhang TH, Li J, Mao JJ, He ZG (2006) Chem J Chinese U 27:349–351

    CAS  Google Scholar 

  11. Li J, Sun J, Cui SM, He ZG (2006) J Chromatogr A. doi: 10.1016/j.chroma.2006.07.073

  12. Balon K, Riebesehl BU, Müller BW (1999) Pharm Res 16:882–888

    Article  CAS  Google Scholar 

  13. Loidl-Stahlhofen A, Hartmann T, Schöttner M, Röhring C, Brodowsky H, Schmitt J, Keldenich J (2001) Pharm Res 18:1782–1788

    Article  CAS  Google Scholar 

  14. Balon K, Riebesehl BU, Müller BW (1999) J Pharm Sci 88:802–806

    Article  CAS  Google Scholar 

  15. Plemper van Balen G, Martinet CM, Caron G, Bouchard G, Reist M, Carrupt PA, Fruttero R, Gasco A, Testa B (2004) Med Res Rev 24:299–324

    Article  Google Scholar 

  16. Burns ST, Khaledi MG (2002) J Pharm Sci 91:1601–1612

    Article  CAS  Google Scholar 

  17. Carrozzino JM, Khaledi MG (2005) J Chromatogr A 1079:307–316

    Article  CAS  Google Scholar 

  18. Carrozzino JM, Khaledi MG (2004) Pharm Res 21:2327–2335

    Article  CAS  Google Scholar 

  19. Pascoe RJ, Masucci JA, Foley JP (2006) Electrophoresis 27:793–804

    Article  CAS  Google Scholar 

  20. Dinelli G, Mallegni R, Vicari A (1997) Electrophoresis 18:214–219

    Article  CAS  Google Scholar 

  21. Bailey DJ, Dorsey JG (2001) J Chromatogr A 919:181–194

    Article  CAS  Google Scholar 

  22. Ishihama Y, Oda Y, Uchikawa K, Asakawa N (1995) Anal Chem 67:1588–1595

    Article  CAS  Google Scholar 

  23. Ishihama Y, Oda Y, Asakawa N (1996) Anal Chem 68:1028–1032

    Article  CAS  Google Scholar 

  24. Ishihama Y, Oda Y, Asakawa N (1996) Anal Chem 68:4281–4284

    Article  CAS  Google Scholar 

  25. Mrestani Y, Neubert RHH, Krause A (1998) Pharm Res 15:799–801

    Article  CAS  Google Scholar 

  26. Gluck SJ, Benkö MH, Hallberg RK, Steele KP (1996) J Chromatogr A 744:141–146

    Article  CAS  Google Scholar 

  27. Klotz WL, Schure MR, Foley JP (2001) J Chromatogr A 930:145–154

    Article  CAS  Google Scholar 

  28. Hong M, Weekley BS, Grieb SJ, Foley JP (1998) Anal Chem 70:1394–1403

    Article  CAS  Google Scholar 

  29. Razak JL, Cutak BJ, Larive CK, Lunte CE (2001) Pharm Res 18:104–111

    Article  CAS  Google Scholar 

  30. Klotz WL, Schure MR, Foley JP (2002) J Chromatogr A 962:207–219

    Article  CAS  Google Scholar 

  31. Abraham MH (1993) Chem Soc Rev 22:73–83

    Article  CAS  Google Scholar 

  32. Abraham MH, Chadha HS, Whiting GS, Mitchell RC (1994) J Pharm Sci 83:1085–1100

    Article  CAS  Google Scholar 

  33. Trone MD, Leonard MS, Khaledi MG (2000) Anal Chem 72:1228–1235

    Article  CAS  Google Scholar 

  34. Ishihama Y, Oda Y, Uchikawa K, Aaskawa N (1995) Anal Chem 67:1588–1595

    Article  CAS  Google Scholar 

  35. Abraham MH, Treiner C, Roses M, Rafols C, Ishihama Y (1996) J Chromatogr A 752:243–249

    Article  CAS  Google Scholar 

  36. Yazdanian M, Glynn S, Wright J, Hawi A (1998) Pharm Res 15:1490–1494

    Article  CAS  Google Scholar 

  37. Walter E, Janich S, Roessler BJ, Hilfinger JM, Amidon GL (1996) J Pharm Sci 85:1070–1076

    Article  CAS  Google Scholar 

  38. Shan P, Jogani V, Bagchi T, Misra A (2006) Biotechnol Prog 22:186–198

    Article  Google Scholar 

  39. Danelian E, Karlén A, Karlsson R, Winiwarter S, Hansson A, Löfås S, Hämäläinen MD (2000) J Med Chem 43:2083–2086

    Article  CAS  Google Scholar 

  40. Oprea TI, Gottfries J (1999) J Mol Graph Model 17:261–274

    Article  CAS  Google Scholar 

  41. Willmann S, Schmitt W, Keldenich J, Lippert J, Dressman JB (2004) J Chem Med 47:4022–4031

    Article  CAS  Google Scholar 

  42. Sun J, He Z, Cheng G, Wang S, Hao X, Zou M (2004) Med Sci Monit 10:RA5–14

    CAS  Google Scholar 

  43. Avdeef A (2001) Curr Top Med Chem 1:277–351

    Article  CAS  Google Scholar 

  44. Deconinck E, Hancock T, Coomans D, Massart DL, Vander Heyden Y (2005) J Pharm Biomed Anal 39:91–103

    Article  CAS  Google Scholar 

  45. Zhao YH, Le J, Abraham MH, Hersey A, Eddershaw PJ, Luscombe CN, Boutina D, Beck G, Sherborne B, Cooper I, Platts JA (2001) J Pharm Sci 90:749–784

    Article  CAS  Google Scholar 

  46. Zhao YH, Abraham MH, Le J, Hersey A, Luscombe CN, Beck G, Sherborne B, Cooper I (2002) Pharm Res 19:1446–1457

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhonggui He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Sun, J., Liu, H. et al. Prediction of Human Drug Absorption Using Liposome Electrokinetic Chromatography. Chroma 65, 173–177 (2007). https://doi.org/10.1365/s10337-006-0140-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-006-0140-3

Keywords

Navigation