Skip to main content
Log in

Drug Liposome Partitioning as a Tool for the Prediction of Human Passive Intestinal Absorption

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Appropriate physicochemical parameters are desired for the prediction of passive intestinal drug absorption during lead compound selection and drug development.

Methods. Liposome distribution coefficients measured titrimetrically and solubility data at pH 6.8 were used to characterize 21 structurally diverse ionizable drugs covering a range from <5% to almost complete absorption.

Results. A sigmoidal relationship was found between the percentage of human passive intestinal absorption and a new absorption potential parameter calculated from liposome distribution data and the solubility dose ratio. In contrast, the human absorption data did not correlate with an octanol-based absorption potential or partitioning data alone. Poor correlations were found between liposome and octanol partitioning of ionic species or nonionic bases indicating the profound differences of the partitioning systems.

Conclusions. Liposome distribution coefficients of ionizable drugs derived by a pH-metric titration were successfully used to calculate a parameter that correlates with the percentage of passive intestinal absorption in humans. Profound differences between liposome and octanol partitioning were found for a highly diverse set of species. This titration technique may serve to generate liposome partitioning data for the selection and optimization of lead compounds and in drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeney. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Del. Rev. 23:3–25 (1997).

    Google Scholar 

  2. S. Yee. In vitro permeability across Caco-2 cells (colonic) can predict in vivo (small intestinal) absorption in man—fact or myth. Pharm. Res. 14:763–766 (1997).

    Google Scholar 

  3. K. J. Schaper. Absorption of ionizable drugs: nonlinear dependence on logP, pKa and pH-quantitative relationships. Quant.Struct.-Act.Relat. 1:13–27 (1982).

    Google Scholar 

  4. P. A. Shore, B. B. Brodie, and C. A. M. Hogben. The gastric secretion of drugs: A pH partition hypothesis. J. Pharmacol. Exp. Ther. 119:361–369 (1957).

    Google Scholar 

  5. C. J. Alcorn, R. J. Simpson, D. E. Leahy, and T. J. Peters. Partition and distribution coefficients of solutes and drugs in brush border membrane vesicles. Biochem. Pharmacol. 45:1775–1782 (1993).

    Google Scholar 

  6. F. Barbato, M. I. la Rotonda, and F. Quaglia. Interactions of nonsteroidal antiinflammatory drugs with phospholipids: comparison between octanol/buffer partition coefficients and chromatographic indexes on immobilized artificial membranes. J. Pharm. Sci. 86:225–229 (1997).

    Google Scholar 

  7. H.-Y. Cheng, C. S. Randall, W. W. Holl, P. P. Constantinides, T.-L. Yue, and G. Z. Feuerstein. Carvedilol-liposome interaction: evidence for strong association with the hydrophobic region of the lipid bilayers. Biochim. Biophys. Acta 1284:20–28 (1996).

    Google Scholar 

  8. G. V. Betageri, Y. Theriault, and J. A. Rogers. NMR Study of the interaction of beta-blockers with sonicated dimyritoylphos-phatidylcholine liposomes in the presence of praseodymium cation. Membrane Biochem. 8:197–206 (1989).

    Google Scholar 

  9. F. A. P. C. Gobas, J. M. Lahittete, G. Garofalo, W. Y. Shiu, and D. MacKay. A novel method for measuring membrane-water partition coefficients of hydrophobic organic chemicals: comparison with 1-octanol-water partitioning. J. Pharm. Sci. 77:265–272 (1988).

    Google Scholar 

  10. A. Avdeef, K. J. Box, J. E. A. Comer, C. Hibbert, and K. Y. Tam. pH-metric logP 10: Determination of vesicle membrane-water partition coefficients of ionisable drugs. Pharm. Res. 15:209–215 (1998).

    Google Scholar 

  11. A. Avdeef. pH-Metric logP. Part 1: Difference plots for determining ion-pair octanol-water partition coefficients of multiprotic substances. Quant. Struct.-Act. Relat. 11:510–517 (1992).

    Google Scholar 

  12. A. Avdeef. pH-metric logP-2. Refinement of partition coefficients and ionisation constants of multiprotic substances. J. Pharm. Sci. 82:183–190 (1993).

    Google Scholar 

  13. P. Finholt and S. Solvang. Dissolution kinetics of drugs in human gastric juice—the role of surface tension. J. Pharm. Sci. 57:1322–1326 (1968).

    Google Scholar 

  14. L. S. C. Wan and P. F. S. Lee. CMC of Polysorbates. J. Pharm. Sci. 63:136–137 (1974).

    Google Scholar 

  15. G. Camenisch, G. Folkers, and H. van de Waterbeemd. Review of passive drug absorption models: historical background, recent developments and limitations. Pharm. Acta Helv. 71:309–327 (1996).

    Google Scholar 

  16. J. B. Dressman, G. L. Amidon, and D. Fleisher. Absorption potential: Estimating the fraction absorbed for orally administered compounds. J. Pharm. Sci. 74:588–589 (1985).

    Google Scholar 

  17. J. B. Dressman, and V. A. Gray. Change of pH intestinal fluid. Pharmacopeial Forum 22:1943–1945 (1996).

    Google Scholar 

  18. H. Lennernäs. Does fluid flow across the intestinal mucosa affect quantitative oral drug absorption? Is it time for a reevaluation? Pharm. Res. 12:1573–1582 (1995).

    Google Scholar 

  19. K. Hartke (ed). DAB10 Kommentar Wiss. Verl.-Ges. Stuttgart, 1991.

    Google Scholar 

  20. P. de Miranda, and M. R. Blum. Pharmacokinetics of acyclovir after intravenous and oral administration. J. Antimicrob. Chemother. 12Suppl. B:29–37 (1983).

    Google Scholar 

  21. H. Breithaupt and M. Tittel. Kinetics of allopurinol after single intravenous and oral doses. Eur. J. Clin. Pharmacol. 22:77–84 (1982).

    Google Scholar 

  22. F. von Bruchhausen (ed.). Hagers Handbuch der pharmazeutischen Praxis, 5. Aufl., Springer Verlag Berlin, 1993.

  23. W. F. Frishman. Atenolol and timolol, two new systemic b-adrenoceptor antagonists. N. Engl. J. Med. 306:1456–1462 (1982).

    Google Scholar 

  24. J. E. F. Reynolds, (ed), Martindale, The Extra Pharmacopoeia, 31st Edition, The Royal Pharmaceutical Society London, 1996.

  25. K. Lauritsen, L. S. Laursen, and J. Rask-Madsen. Clinical Pharmacokinetics of drugs used in the treatment of gastrointestinal diseases (Part 1). Clin. Pharmacokinet. 19:11–31 (1990).

    Google Scholar 

  26. L. Lemberger, R. F. Bergstrom, R. L. Wollen, N. A. Farid, G. G. Enas, and G. R. Aronoff. Fluoxetine: Clinical pharmacology and physiological disposition. J. Clin. Psychiatry 46:14–19 (1985).

    Google Scholar 

  27. R. F. N. Mills, S. S. Adams, E. E. Cliffe et al. The metabolism of ibuprofen. Xenobiotica 3:589–598 (1973a).

    Google Scholar 

  28. R. A. Theodor, H.-J. Weimann, W. Weber et al. Absolute bioavailability of moxonidine. Eur. J. Drug Metab. Pharmacokinet. 16:153–159 (1991).

    Google Scholar 

  29. B. Fulton, and K. L. Goa. Olanzapine A review of its pharmacological properties and therapeutic efficacy in the management of schizophrenia and related psychoses. Drugs 53:281–298 (1997).

    Google Scholar 

  30. P. A. Routledge and D. G. Shand. Clinical pharmacokinetics of propranolol. Clin. Pharmacokinet. 4:73–90 (1979).

    Google Scholar 

  31. M. H. Skinner, and T. F Blaschke. Clinical pharmacokinetics of rifabutin. Clin. Pharmacokinet. 28:115–125 (1995).

    Google Scholar 

  32. J. C. Jensen. Clinical pharmacokinetics of terbinafine. Clin. Exp. Dermatol. 14:110–113 (1989).

    Google Scholar 

  33. H. D. Langtry and D. M. Campoli-Richards. Zidovudin. Drugs 37:407–450 (1989).

    Google Scholar 

  34. A. N. Wadworth and D. McTavish. Zopiclone A review of its pharmacological properties and therapeutic efficacy. Drugs & Aging 3:441–459 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. U. Riebesehl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balon, K., Riebesehl, B.U. & Müller, B.W. Drug Liposome Partitioning as a Tool for the Prediction of Human Passive Intestinal Absorption. Pharm Res 16, 882–888 (1999). https://doi.org/10.1023/A:1018882221008

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018882221008

Navigation