Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Highly sensitive gas pressure sensor based on the hollow core Bragg fiber and harmonic Vernier effect

Not Accessible

Your library or personal account may give you access

Abstract

A highly sensitive inline gas pressure sensor based on the hollow core Bragg fiber (HCBF) and harmonic Vernier effect (VE) is proposed and experimentally demonstrated. By sandwiching a segment of HCBF between the lead-in single-mode fiber (SMF) and the hollow core fiber (HCF), a cascaded Fabry–Perot interferometer is produced. The lengths of the HCBF and HCF are precisely optimized and controlled to generate the VE, achieving a high sensitivity of the sensor. Meanwhile, a digital signal processing (DSP) algorithm is proposed to research the mechanism of the VE envelope, thus providing an effective way to improve the sensor’s dynamic range based on calibrating the order of the dip. Theoretical simulations are investigated and matched well with the experimental results. The proposed sensor exhibits a maximum gas pressure sensitivity of 150.02 nm/MPa with a low temperature cross talk of 0.00235 MPa/$^\circ$C. All these advantages highlight the sensor’s enormous potential for gas pressure monitoring under various extreme conditions.

© 2023 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Dual Fabry-Perot interferometers gas pressure sensor in a parallel configuration based on a hollow core Bragg fiber and the harmonic Vernier effect

zongru yang, weihao yuan, zhenggang lian, and changyuan yu
Opt. Express 30(25) 44420-44433 (2022)

High-sensitivity gas pressure sensor based on a multimode interferometer using hollow-core tube lattice fiber

Zhengyong Li, Changrui Liao, Yatao Yang, Ying Wang, and Yiping Wang
Opt. Lett. 45(16) 4571-4574 (2020)

Composite Fabry–Perot interferometric gas pressure and temperature sensor utilizing four hole fiber with sensitivity boosted by high-order harmonic Vernier effect

Ling Chen, Jiajun Tian, Qiang Wu, Jiewen Li, Yong Yao, and Jiawei Wang
Opt. Express 31(15) 24988-25003 (2023)

Supplementary Material (1)

NameDescription
Supplement 1       Supplement 1

Data availability

The data that support this study are available from the corresponding author upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.