Skip to content
Publicly Available Published by De Gruyter January 1, 2009

Comparative analysis of electron-phonon relaxation in a semiconducting carbon nanotube and a PbSe quantum dot

  • Bradley F. Habenicht , Svetlana V. Kilina and Oleg V. Prezhdo

Abstract

The key features of the phonon-induced relaxation of electronic excitations in the (7,0) zig-zag carbon nanotube (CNT) and the Pb16Se16 quantum dot (QD) are contrasted using a time-domain ab initio density functional theory (DFT) simulation. Upon excitation from the valence to the conduction band (CB), the electrons and holes nonradiatively decay to the band-edge in both materials. The paper compares the electronic structure, optical spectra, important phonon modes, and decay channels in the CNT and QD. The relaxation is faster in the CNT than in the QD. In the PbSe QD, the electronic energy decays by coupling to low-frequency acoustic modes. The decay is nonexponential, in agreement with non-Lorentzian line-shapes observed in optical experiments. In contrast to the QD, the excitation decay in the CNT occurs primarily via high-frequency optical modes. Even though the holes have a higher density of states (DOS), they relax more slowly than the electrons, due to better coupling to low-frequency vibrations. Further, the expected phonon bottleneck is not observed in the QD, as rationalized by a high density of optically dark states. The same argument applies to the CNT. The computed results agree well with experimentally measured ultrafast relaxation time-scales and provide a unique atomistic picture of the electron-phonon relaxation processes.


Conference

International Conference on Modern Physical Chemistry for Advanced Materials (MPC '07), Kharkiv, Ukraine, 2007-06-26–2007-06-30


References

1. doi:10.1351/pac200274091491, J. Jortner, C. N. R. Rao. Pure Appl. Chem. 74, 1491 (2002).Search in Google Scholar

2. R. Saito, G. Dresselhaus, M. S. Dresselhaus. Physical Properties of Carbon Nanotubes, Imperial College Press, London (1998).10.1142/p080Search in Google Scholar

3. doi:10.1126/science.1086963, M. Ouyang, D. D. Awschalom. Science 301, 1074 (2003).Search in Google Scholar

4. doi:10.1126/science.1116955, J. Petta, A. Johnson, J. Taylor, E. Laird, A. Yacoby, M. Lukin, C. Marcus, M. Hanson, A. Gossard. Science 309, 2180 (2005).Search in Google Scholar

5. doi:10.1146/annurev.physchem.52.1.193, A. J. Nozik. Annu. Rev. Phys. Chem. 52, 193 (2001).Search in Google Scholar

6. doi:10.1103/PhysRevLett.92.186601, R. D. Schaller, V. I. Klimov. Phys. Rev. Lett. 92, 186601 (2004).Search in Google Scholar

7. doi:10.1126/science.290.5490.314, V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, M. G. Bawendi. Science 290, 314 (2000).Search in Google Scholar

8. doi:10.1126/science.1116703, D. Talapin, C. Murray. Science 310, 86 (2005).Search in Google Scholar

9. doi:10.1351/pac200072010003, P. Alivisatos. Pure Appl. Chem. 72, 3 (2000).Search in Google Scholar

10. doi:10.1126/science.1093605, N. Mason, M. J. Biercuk, C. M. Marcus. Science 303, 655 (2004).Search in Google Scholar

11. doi:10.1038/386474a0, S. J. Tans, M. H. Devoret, H. J. Dai, A. Thess, R. E. Smalley, L. J. Geerligs, C. Dekker. Nature 386, 474 (1997).Search in Google Scholar

12. doi:10.1126/science.1081294, J. A. Misewich, R. Martel, P. Avouris, J. C. Tsang, S. Heinze, J. Tersoff. Science 300, 783 (2003).Search in Google Scholar

13. doi:10.1021/ci0503356, D. J. Klein, A. T. Balaban. J. Chem. Inf. Model. 46, 307 (2006).Search in Google Scholar

14. doi:10.1016/j.carbon.2005.02.020, A. Kruger, F. Kataoka, M. Ozawa, T. Fujino, Y. Suzuki, A. E. Aleksenskii, A. Y. Vul, E. Osawa. Carbon 43, 1722 (2005).Search in Google Scholar

15. doi:10.1016/j.diamond.2005.08.057, E. D. Eidelman, V. I. Siklitsky, L. V. Sharonova, M. A. Yagovkina, A. Y. Vul, M. Takahashi, M. Inakuma, M. Ozawa, E. Osawa. Diamond Relat. Mater. 14, 1765 (2005).Search in Google Scholar

16. doi:10.1351/pac200577101675, N. Tagmatarchis, M. Prato. Pure Appl. Chem. 77, 1675 (2005).Search in Google Scholar

17. doi:10.1146/annurev.physchem.52.1.193, M. Califano, A. Zunger, A. Franceschetti. Annu. Rev. Phys. Chem. 52, 193 (2001).Search in Google Scholar

18. doi:10.1126/science.287.5455.1011, V. Klimov, A. Mikhailovsky, D. McBranch, C. Leatherdale, M. Bawendi. Science 287, 1011 (2000).Search in Google Scholar

19. doi:10.1103/PhysRevLett.95.196401, R. D. Schaller, J. M. Pietryga, S. V. Goupalov, M. A. Petruska, S. A. Ivanov, V. I. Klimov. Phys. Rev. Lett. 95, 196401 (2005).Search in Google Scholar

20. doi:10.1038/nature03815, A. Johnson, J. Petta, J. Taylor, A. Yacoby, M. Lukin, C. Marcus, M. Hanson, A. Gossard. Nature 435, 925 (2005).Search in Google Scholar

21. doi:10.1103/PhysRevLett.94.127403, H. Htoon, M. J. O'Connell, S. K. Doorn, V. I. Klimov. Phys. Rev. Lett. 94, 127403 (2005).Search in Google Scholar

22. doi:10.1016/j.synthmet.2005.01.041, G. Lanzani, G. Cerullo, A. Gambetta, C. Manzoni, E. Menna, M. Meneghetti. Synth. Met. 155, 246 (2005).Search in Google Scholar

23. doi:10.1103/PhysRevLett.84.5002, T. Hertel, G. Moos. Phys. Rev. Lett. 84, 5002 (2000).Search in Google Scholar

24. doi:10.1103/PhysRevLett.92.177401, F. Wang, G. Dukovic, L. E. Brus, T. F. Heinz. Phys. Rev. Lett. 92, 177401 (2004).Search in Google Scholar

25. doi:10.1021/nl0617383, H. Kamisaka, S. V. Kilina, K. Yamashita, O. V. Prezhdo. Nano Lett. 6, 2295 (2006).Search in Google Scholar

26. doi:10.1103/PhysRevLett.92.077402, C. D. Spataru, S. Ismail-Beigi, L. X. Benedict, S. G. Louie. Phys. Rev. Lett. 92, 077402 (2004).Search in Google Scholar

27. doi:10.1103/PhysRevLett.94.036801, R. B. Capaz, C. D. Spataru, P. Tangney, M. L. Cohen, S. G. Louie. Phys. Rev. Lett. 94, 036801 (2005).Search in Google Scholar

28. doi:10.1021/jp040079k, I. A. Howard, D. J. Klein, N. H. March, C. V. Alsenoy, S. Suhai, Z. Janosvalfi, A. Nagy. J. Phys. Chem. B 108, 14870 (2004).Search in Google Scholar

29. Y.-C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y.-P. Zhao, T.-M. Lu, G.-C. Wang, X.C. Zhang. Appl. Phys. Lett. 81, 075 (2002).Search in Google Scholar

30. doi:10.1038/nature03046, B. J. LeRoy, S. G. Lemay, J. Kong, C. Dekker. Nature 432, 371 (2004).Search in Google Scholar

31. doi:10.1021/nl051107t, M. Oron-Carl, F. Hennrich, M. M. Kappes, H. V. Lohneysen, R. Krupke. Nano Lett. 5, 1761 (2005).Search in Google Scholar

32. doi:10.1021/ar970220q, F. W. Wise. Acc. Chem. Res. 33, 773 (2000).Search in Google Scholar

33. doi:10.1039/b604743b, J. J. Peterson, T. D. Krauss. Phys. Chem. Chem. Phys. 8, 3851 (2006).Search in Google Scholar

34. doi:10.1103/PhysRevLett.95.086801, P. Liljerothos, P. A. Z. van Emmichoven, S. G. Hickey, H. Weller, B. Grandidier, G. Allan, D. Vanmaekelbergh. Phys. Rev. Lett. 95, 086801 (2005).Search in Google Scholar

35. doi:10.1103/PhysRevB.72.195312, J. M. Harbold, H. Du, T. D. Krauss, K. S. Cho, C. B. Murray, F. W. Wise. Phys. Rev. B 72, 195312 (2005).Search in Google Scholar

36. Al. L. Efros, A. L. Efros. Sov. Phys. Semicond. 16, 772 (1982).Search in Google Scholar

37. doi:10.1063/1.447218, L. E. Brus. J. Chem. Phys. 80, 4403 (1984).Search in Google Scholar

38. doi:10.1103/PhysRevLett.95.163001, C. F. Craig, W. R. Duncan, O. V. Prezhdo. Phys. Rev. Lett. 95, 163001 (2005).Search in Google Scholar

39. doi:10.1063/1.459170, J. C. Tully. J. Chem. Phys. 93, 1061 (1990).Search in Google Scholar

40. doi:10.1063/1.467455, S. Hammes-Schiffer, J. C. Tully. J. Chem. Phys. 101, 4657 (1994).Search in Google Scholar

41. doi:10.1063/1.1856460, P. V. Parahdekar, J. C. Tully. J. Chem. Phys. 122, 094102 (2005).Search in Google Scholar

42. doi:10.1146/annurev.physchem.55.091602.094449, M. A. L. Marques, E. K. U. Gross. Annu. Rev. Phys. Chem. 55, 427 (2004).Search in Google Scholar

43. doi:10.1063/1.1808412, R. Baer, D. Neuhauser. J. Chem. Phys. 121, 9803 (2004).Search in Google Scholar

44. doi:10.1103/PhysRevB.71.033201, S. Tretiak, K. Igumenshchev, V. Chernyak. Phys. Rev. B 71, 033201 (2005).Search in Google Scholar

45. J. C. Tully. In Classical and Quantum Dynamics in Condensed Phase Simulations, B. J. Berne, G. Ciccotti, D. F. Coker (Eds.), pp. 489-514, World Scientific, Singapore (1998).Search in Google Scholar

46. D. F. Coker. In Computer Simulations in Chemical Physics, M. P. Allen, D. J. Tildesley (Eds.), pp. 315-377, Kluwer Academic, Dordrecht (1993).10.1007/978-94-011-1679-4_9Search in Google Scholar

47. doi:10.1007/s00214-005-0032-x, O. V. Prezhdo. Theor. Chem. Acc. 116, 206 (2006).Search in Google Scholar

48. J. P. Perdew. In Electronic Structure of Solids, P. Ziesche, H. Eschrig (Eds.), Akademie Verlag, Berlin (1991).Search in Google Scholar

49. doi:10.1016/S0009-2614(00)01241-0, D. Nerukh, J. H. Frederick. Chem. Phys. Lett. 332, 145 (2000).Search in Google Scholar

50. doi:10.1126/science.1110265, F. Wang, G. Dukovic, L. E. Brus, T. F. Heinz. Science 308, 838 (2005).Search in Google Scholar

51. doi:10.1103/PhysRevLett.81.5294, O. V. Prezhdo, P. J. Rossky. Phys. Rev. Lett. 81, 5294 (1998).Search in Google Scholar

52. doi:10.1103/PhysRevA.67.062113, A. Luis. Phys. Rev. A 67, 062113 (2003).Search in Google Scholar

53. doi:10.1016/0927-0256(96)00008-0, G. Kresse, J. Furthmuller. Comput. Mater. Sci. 6, 15 (1996).Search in Google Scholar

54. doi:10.1103/PhysRevB.41.7892, D. Vanderbilt. Phys. Rev. B 41, 7892 (1990).Search in Google Scholar

55. doi:10.1103/PhysRevLett.93.245501, K. P. Bohnen, R. Heid, H. J. Liu, C. T. Chan. Phys. Rev. Lett. 93, 245501 (2004).Search in Google Scholar

56. doi:10.1016/j.commatsci.2004.07.001, E. A. Albanesi, E. L. P. Y. Blanca, A. G. Petukhov. Comput. Mater. Sci. 32, 85 (2005).Search in Google Scholar

57. doi:10.1103/PhysRevB.70.245321, G. Allan, C. Delerue. Phys. Rev. B 70, 245321 (2004).Search in Google Scholar

58. doi:10.1063/1.1677083, W. H. Miller, T. F. George. J. Chem. Phys. 56, 5637 (1972).Search in Google Scholar

59. doi:10.1134/S0036024406080188, O. N. Kalugin, V. V. Chaban, Y. V. Kolesnik. Russ. J. Phys. Chem. 80, 1273 (2006).Search in Google Scholar

60. doi:10.1016/S0167-7322(00)89014-5, O. N. Kalugin, M. N. Volobuev, A. V. Ishchenko, A. K. Adya. J. Mol. Liq. 85, 299 (2000).Search in Google Scholar

61. doi:10.1016/j.molliq.2003.08.006, D. Nerukh, T. R. Griffiths. J. Mol. Liq. 109, 83 (2004).Search in Google Scholar

62. doi:10.1088/0305-4470/38/24/L03, P. Exner. J. Phys. A: Math. Gen. 38, L449 (2005).Search in Google Scholar

63. doi:10.1063/1.1605095, I. Kondov, U. Kleinekathofer, M. Schreiber. J. Chem. Phys. 119, 6635 (2003).Search in Google Scholar

64. doi:10.1103/PhysRevLett.94.027402, V. Perebinos, J. Tersoff, P. Avouris. Phys. Rev. Lett. 94, 027402 (2005).Search in Google Scholar

Published Online: 2009-01-01
Published in Print: 2008-01-01

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1351/pac200880071433/html
Scroll to top button